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ABSTRACT

This dissertation introduces a comprehensive framework aimed at reshaping applied

cybersecurity education to significantly ease the learning curve, at scale, through three

synergistic innovations. These methods address the daunting educational barriers in

cybersecurity, enabling learners at all levels to understand complex security concepts

more easily.

The first innovation, the PWN methodology, redefines the traditional Capture The

Flag (CTF) model by offering a structured series of modularized, self-guided challenges.

This approach helps simplify complex topics into manageable units, each building on

the last, which allows students to progress at their own pace. Over five years and with

over 400 systems security challenges developed, this method has effectively helped

students evolve from beginners to masters of advanced security exploits.

The second component is the DOJO platform, an open-source learning environment

that uses containerization technology to provide a pre-configured, browser-based

interface. This platform reduces the setup complexities associated with applied cy-

bersecurity and has already given over 10,000 students immediate access to practical

learning scenarios, from vulnerability discovery to advanced debugging, in a uni-

fied, user-friendly environment. Its seamless integration allows educators to quickly

launch new challenges and resources, ensuring a continuous and dynamic educational

experience.

The third component, the SENSAI tutor, is an AI-driven tutoring system that

leverages Large Language Models to offer personalized, intelligent support. Integrated

with the PWN methodology and DOJO platform, SENSAI serves as an on-demand mentor,

providing tailored advice and problem-solving assistance. It adapts to individual stu-
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dent needs, offering specific guidance and theoretical support to enhance understanding

and retention of complex concepts.

Together, these three components create a powerful, integrated educational strategy

that not only equips students with vital cybersecurity skills but also deepens their

understanding of digital vulnerabilities and the strategic thinking needed to mitigate

them. This strategy prepares a new generation of cybersecurity professionals to

navigate the ever-evolving threats of the digital world.
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Chapter 1

INTRODUCTION

The summer after I graduated high school, I attended DEF CON for the first time.

My dad and I made the drive out to Las Vegas, and I was immediately taken aback

by the unique atmosphere of hacker culture. I had never seen so many people with

dyed hair, piercings, and tattoos in one place, all of whom were wearing ridiculous

7” vinyl records on lanyards around their necks, contrasting sharply with the gaudy

casinos’ artificial, freezing cold interiors, set against the sweltering heat of the Nevada

desert in August. DEF CON is a truly bizarre environment that does not make sense.

We attended talks on topics ranging from remote exploitation of unaltered passenger

vehicles [56], to modding Mattell children’s toys to do radio frequency hacking in

order to force-open garage doors [41], to the release of a binary analysis framework

called angr [83]. These talks, while cool, weren’t really all that interesting; I didn’t

understand most of what was being said, I only knew that it was cool. What was

interesting though, was Packet Hacking Village [21], where I learned how to use

Wireshark to analyze network traffic, and warl0ck gam3z CTF [22], where I learned

how to use basic static analysis techniques to extract a flag from a binary. It was here

that I was first introduced to the concept of Capture The Flag (CTF); it was very

real, and I was hooked.

Eventually we stumpled upon the DEF CON CTF [20] room, where we watched

a bunch of mostly-twenty-something-year-olds sitting in clusters around different

tables, staring into the void of their laptops, sometimes saying something to someone

seated near them, and—on rare occasion—yelling with excitement. There was a

1



scoreboard projected onto the wall with teams including Shellphish [82], PPP [76],

and DEFKOR [27] all competing to be the best hackers in the world. One of the

organizers was walking around, and explained to us that the teams were analyzing

multiple binary services, patching them, and exploiting the other teams to gain points

every few minutes, and that the visualization on the wall showed every time a team

successfully hacked another team. Much like the talks, I didn’t really understand what

was going on, how their activity looked in comparison to what I had done in warl0ck

gam3z CTF. I didn’t know at the time, for example, that for every cluster of 8 people

sitting together at the same table, there was another 40 people on their team working

remotely from a nearby hotel suite, sitting in front of their own laptops, staring into

their own voids. I didn’t know why they were doing what they were doing, or how

they were doing it, but I knew that it was cool. These were the best hackers in the

world.

1.1 Capture The Flag

As I now know, the objective of Capture The Flag (CTF) is simple: cap-

ture the flag [25]. It’s not a physical flag, but a secret blob of data, a string

of text, called a “flag”, that is a token of success. Often it looks something like

flag{b37_y0u_d1dn7_3xp3c7_a_f14g_1n_my_d1553r74t10n}.

Once you have the flag—that exact piece of text—you submit it to the CTF

scoreboard, and you get points. The challenge is that the flag is guarded by a program

(often called the “challenge”, or sometimes the “service”). The specifics of how the

program guards the flag are different for every challenge, but the general idea is that

the program isn’t designed to just give you the flag, but it is possible because of some
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vulnerability—or some non-obvious detail that must be figured out—in the program

that you are able to get the flag. By getting the flag, you have proof that you have

successfully exploited the vulnerability, or demonstrated that you understand the

non-obvious detail, and you get points.

The smartest people I have ever met are CTF players. This format is incredibly

conducive to learning, and it is the reason that I am a cybersecurity expert today.

Staring at a problem for hours, with a team of people who are all doing the same,

testing ideas, figuring out why those ideas didn’t work, and then trying something

else, forces you to truly understand. The thrill of getting a flag after hours of work is

incredible.

At its core, CTF really has nothing to do with cybersecurity. It has to do with

problem solving, figuring out how things work, how to make things work. It has to

do with learning, with pursuing knowledge. At its core, it has to do with hacking.

Not the type of “hacking” that is illegal, or is unethical, or has to do with breaking

things, but the type of hacking that is about understanding, about making things

work, about creating. The best hackers are the ones who are the most creative, the

most innovative, the most curious—the ones that have the most perseverance and the

most passion. The ones that have mastered learning. CTF is nothing more than an

outlet for hacking—and hacking is learning.

1.2 The Learning Curve

Unfortunately for most people looking to get started, CTF does not have a learning

curve—it has a learning wall. The traditional path from “I don’t know anything about
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Figure 1. Emblematic Learning Curve: Traditional

cybersecurity” to “I’m a proficient hacker” looks something like Figure 1. Many novices

will stop before they get anywhere near the wall.

I have first hand experience with this. Even as a member of one of the top (and

the longest standing) CTF teams in the world, Shellphish, we have had a hard time

getting new members to stick around. Getting them to the point where they can

contribute to the team—and feel useful—is a long, daunting process through the

learning abyss. Most do not make it.

But can something be done about this? What is incredible about CTF, is that

for those who do make it, they are able to learn topics deeply. And even better, this

is possible at scale. The cost of an additional student is nearly zero; a challenge is

created, and then it can be worked on by any number of students.

In this work, I focus on overcoming the pedagogical limitations of CTF; so that

more people can learn, so that more people can hack. First I introduce a novel

methodology—PWN—for creating educational CTF challenges, which are designed to

provide guidance and incrementally introduce students to new concepts. Next I build
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a novel infrastructure—DOJO—for hosting and working on these challenges, accessible

entirely from within the browser, so that students can begin immediately hacking

without any barriers. Finally, I present a novel tutoring system—SENSAI—which is

able to perceive what students are doing, and use that information in order to provide

automated, immediate, individualized feedback and guidance to students, at scale. All

of this comes together to create pwn.college2—to smoothen the learning curve—so

that we can once and for all “tear down this wall!” [77].

2pwn.college is a free online cybersecurity education platform available at https://pwn.college/
for anyone interested in learning how to hack!
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Chapter 2

PWN THE LEARNING CURVE: EDUCATION-FIRST CTF CHALLENGES

Figure 2. Emblematic Learning Curve: PWN

The PWN methodology breaks down the learning curve into a series of small,
achievable steps. This is in contrast to the traditional CTF approach,
which often presents a steep learning curve. We are able to achieve this by
introducing a series of challenges which decompose the topic into smaller,
more manageable challenges, each slowly building on the previous, and
each providing a learning opportunity. This is further enabled through
self-guiding, self-introspective challenges, which offer a detailed analysis of
the interworkings of the challenge. In doing so, we are able to provide a
more individualized learning experience, which is more effective and more
engaging.
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2.1 Introduction

Modern cybersecurity requires an understanding and integration of several concepts

concurrently. For example, a software exploit might involve a race condition which

enables a heap use-after-free. This primitive might cause memory corruption that,

in turn, can be used to achieve arbitrary code execution through return oriented

programming. If the target is a sandboxed process, OS kernel vulnerabilities (for

example, a kernel race condition) might then be abused to gain code execution within

the context of the kernel. Is it possible to teach all of these concepts to the average

undergraduate computer science student? In order to understand this exploit, students

must master reverse engineering, race conditions, dynamic allocator misuse, memory

errors, return oriented programming, sandboxing, and kernel security.

Despite this complexity, conveying such understanding is critical. Apple will pay

up to $2 million for a zero-click remote chain that provides full kernel execution

with persistence, includes a kernel PAC bypass, and circumvents the protections of

Lockdown Mode [2]. Such exploits fetch this price because they are constantly being

sought out, found, and used by bad actors to circumvent the security of people and

organizations [98]. Effective education methodologies to instil in students an ability to

identify and fix such flaws is critical to the security of the modern software ecosystem.

In this chaper, we implement and discuss a novel methodology for teaching

advanced cybersecurity concepts to mastery at scale. We explore the strategies

necessary for students to not only conceptually understand vulnerabilities, but to apply

this knowledge by crafting advanced end-to-end exploits from scratch. Furthermore,

we address the challenge of achieving this at scale, catering to hundreds or even

thousands of students. By the end of a single semester undergraduate course at a
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large public R1 research university, students—some of whom have previously never

seen x86-64 assembly—craft end-to-end exploits which, for example, leverage kernel

vulnerabilities to achieve arbitrary code execution in a sandboxed process with modern

mitigations in place. Two crucial observations guide the design of our methodology.

First, we observe that although security concepts must be integrated

concurrently, they need not be taught concurrently or even atomically. We

explore individual cybersecurity concepts each in their own module, building them

up gradually through a series of challenges. We begin with a basic and simplified

problem and gradually introduce more advanced concepts and realistic constraints,

progressively weaving through constituent concepts and gently introducing ideas that

will be crucial to succeeding in later challenges. By minimizing conceptual jumps

between challenges, we aim to flatten the learning curve and make the material more

approachable. After the students master several concepts independently, we combine

them.

Second, we observe that students need not learn to apply a concept, while

simultaneously learning the often-times complex introspection tools nec-

essary to debug and understand why their solution is failing. Students

often struggle to appropriately employ tools like gdb and strace for aiding their

understanding of the problem. This presents a massive learning barrier, as they have

no way to know if their solution is failing because of a bug in their solution or a

bug in their understanding of the concept. To solve this problem, we have developed

self-guiding variants of all challenges. This allows students to understand the concept

before moving on to the regular variant, which requires them to use their own analysis

tools such as gdb to solve the challenge. This approach helps overcome difficulties of
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performing introspection and debugging by decoupling them from the learning of the

concept itself, and reduces barriers to progress for many students.

Our challenges draw inspiration from Capture The Flag (CTF), but we have

observed that while CTFs are valuable, they are not a universal solution in cyber-

security learning: CTF challenges are designed to be challenging, not necessarily

educational. Adopting an education-first approach, we created over 400 challenges

over five years, tailored for our undergraduate Computer Systems Security course.

These challenges have been integrated into a globally accessible educational website,

teaching binary exploitation concepts to over 10,000 students. In this chaper, we detail

our experience designing these challenges and discuss the lessons we have learned

in the process: highlighting the design of the challenges, what worked, what didn’t,

and why. To evaluate our methodology’s effectiveness, a survey was administered to

students who participated in our course. The results showed that a majority found

the challenges instrumental in grasping cybersecurity concepts. Following this, a

subsequent course on vulnerability research indicated that students could leverage this

foundational knowledge to identify and report vulnerabilities in real-world software.

As a commitment to global education, we make all challenges and accompanying

lecture materials discussed herein freely, and easily accessible, to the world, available

at https://pwn.college/.

2.2 Related Work

Researchers have explored the use of hacking as a pedagogical tool to teach

computer science and cybersecurity concepts. In [11], Bratus defines hacking by “the

ability to question the trust assumptions in the design and implementation of computer
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systems rather than any negative use of such skills.“ Through the hacker lens, students

are able to perceive a cross-layer view of computer systems. This approach encourages

students to think critically and creatively about computer systems. By analyzing

the failure modes of systems from a hacker’s perspective, students can gain a deeper

understanding of how the various layers of a system interact and can be exploited.

Applied cybersecurity labs are an effective pedagogical approach for cybersecurity

concepts such as SDN Security [71], Reverse Engineering [3], SQL Injection [6], and

Android mobile security [44]. Moreover, researchers have proposed using hacking as

toy problems to teach various underlying computer science concepts [64]. For example,

parsing can be taught through the example of intrusion detection systems, file systems

can be taught through forensics and recovering deleted files, and assembly and memory

allocation can be taught through shellcode and buffer overflows.

Capture The Flag (CTF) events are popular in the cybersecurity community as

opportunities for participants to apply their knowledge to solve complex challenges in

a competitive format. The educational merit of hacking events has been acknowledged

by the academic community, as evidenced by academic competitions like iCTF [90],

picoCTF [15], and CSAW CTF [32] that specifically cater to students and enable

them to showcase their abilities and engage in peer competition. CTF events have

become an effective way to cultivate the next generation of cybersecurity experts [5,

28] and advance the state of the art in cybersecurity. Increasingly, CTF is being used

within academic courses, with many educators incorporating them into their courses

as exercises [57] or even making them the focal point of a flipped classroom model [14,

63]. Educators report increased student engagement, and improved self-confidence

and motivation among the students [47, 26, 14].

CTF can be an incredibly valuable educational tool, but there are many challenges
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and pitfalls, especially for novices. While a flag-based system provides instant feedback

on the correctness of an answer, it lacks partial flags or credit, making it difficult to

gauge progress. This limitation is especially pronounced in challenges intentionally

designed to frustrate competitors, which are unsuitable for educational purposes.

Instead, a well-designed challenge should guide students through the solution process,

as Chung argues [17]. However, a methodology for designing challenges that strike

the right balance between being engaging and informative is challenging and has

received limited attention in the literature. In this chaper, we focus on addressing

these limitations.

Vykopal et al. [91] identified three main reasons why beginners may become

discouraged: overly difficult challenges, ambiguous challenges, and limited feedback

on progress. In [96], the authors aimed to target a novice population by designing

challenges that did not require significant prior knowledge (for example, avoiding

compiled binaries, which were considered too difficult). However, novices still struggle

to self-learn and require guidance and support. For instance, in [58], researchers

provided novices with mentors and taught a lecture on the networking tool tcpdump to

prepare them for upcoming challenges. The authors of picoCTF found that competitors

tend to prefer challenges that require minimal familiarity with the command line

or additional tools, and consequently stressed the importance of teaching tooling to

students [15]. Similarly, [95] found that while there is no way to fake the knowledge

needed in a CTF challenge, the game must be at an appropriate level for the audience.

If students have not studied networking and lack experience with the command line,

they may experience difficulty and frustration. As a solution, the authors suggest

creating tutorials and “level zero” versions of challenges to provide a foundation for

students to build upon. This approach allows novices to gradually develop their

11



skills and knowledge, gaining confidence and motivation as they progress through

the challenges. In this chaper, we expand upon this idea of a “level zero” version of

challenges, by providing an entire progression of challenges that build upon each other

to ramp up the difficulty and complexity, and continue to build up confidence and

knowledge along the way.

In order to gain better insight into how students approach and progress in solving

challenges, some tools have been developed which introspects their process [94, 59].

These tools help educators identify challenging tasks and improve educational materials.

In this chaper, we focus specifically on the process by which we enhance those

educational materials, and in particular, enhance the challenges. We take the insight

of where a student is struggling and use it to guide the design of predecessor challenges

that will help them succeed.

Designing effective challenges can be both a difficult and time-consuming task.

Alpaca [29] is a system that uses AI and a database of vulnerabilities to generate chal-

lenge scenarios automatically according to user-specified constraints. The generated

scenarios include a series of vulnerabilities and exploits that must be overcome to

complete the challenge and create virtual machines with these vulnerabilities built-in.

Users can specify complexity levels and specific vulnerabilities that must be used. Con-

versely, SecGen [80] generates challenges by randomly selecting composable modules.

In [31], the authors automatically generate variants of reverse engineering challenges

in order to prevent cheating. picoCTF also focuses on automatic challenge genera-

tion [13], but uses a much more trivial find-and-replace approach against challenge

values. In this chaper, we focus on templated challenge generation which enables very

slight modifications within low level program details. Rather than using different high

level vulnerabilities present within a scenario, or focusing only on the task of replacing
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specific values in a challenge, as done in prior work, our templating methodology

is more generic and allows us to easily create a progression of challenges that build

upon each other by specifying only the differences between challenges. This provides

a significant advantage over the prior work, as it allows our challenges to be much

more maintainable, and is what enables challenge progression in the first place.

2.3 Individualized Concepts

We split the complex area of binary security into a number of single-concept

modules, which we detail in this section. Because Linux-based infrastructure is easier

to build and maintain, our challenges explore these concepts in a Linux environment,

although analogues can conceptually be created for other platforms as well. Successful

solution of a challenge allows students to retrieve challenge-specific secret files, called

flags, that they can redeem for credit in our institution’s Computer Systems Security

course.

2.3.1 Shellcode Injection

Shellcoding is the art of injecting code into a program, usually during exploitation,

to induce attacker-desired actions. It is traditionally taught by presenting students

with a stack buffer overflow and an executable stack, and expecting students to figure

out memory corruption, an exploit payload, as well as learning how to debug their

exploit all at once. Instead, this module explicitly focuses on the payload by ingesting

shellcode and immediately executing it, allowing students to fully focus on learning

about shellcode itself. Throughout the module, we gradually introduce additional
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constraints on this shellcode to force students to reason creatively about accomplishing

attacker goals under difficult situations.

Before running shellcode, teaching variants disassemble the ingested payload, after

any mutations and constraints are applied, and display it. Additionally, we have

recently implemented an automatic breakpoint at the beginning of the shellcode when

students start the challenge from a debugger, to ease troubleshooting. While students

can, of course, do both of these things manually, simplifying the debugging process

helps avoid frustration.

2.3.2 Reverse Engineering

Reverse Engineering is the process of analyzing a system in order to derive

knowledge of its design and implementation. While this often means simply learning to

read assembly, in order to truly master reverse engineering, it is important to be able to

infer and understand the core design of a target system. This understanding, in turn, is

typically used to reason about vulnerabilities in binary code. In this module, however,

we free students from the need to reason about vulnerabilities by creating challenges

requiring students to understand and invert algorithms that are implemented with

(through the course of the module) increasing amount of obfuscation.

Teaching variants display the results of data mutations as they occur, allowing

students to double-check their hypotheses. In later levels, teaching variants display

the VM state and executed instructions to enhance initial student understanding.
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Send your payload (up to 8 bytes)!
AAAAAAAA
You sent 8 bytes!
Let's see what happened with the stack:
+---------------------------------+-------------------------+--------------------+
| Stack location | Data (bytes) | Data (LE int) |
+---------------------------------+-------------------------+--------------------+
| 0x00007ffc82475420 (rsp+0x0000) | 00 00 00 00 00 00 00 00 | 0x0000000000000000 |
| 0x00007ffc82475428 (rsp+0x0008) | 08 66 47 82 fc 7f 00 00 | 0x00007ffc82476608 |
| 0x00007ffc82475430 (rsp+0x0010) | f8 65 47 82 fc 7f 00 00 | 0x00007ffc824765f8 |
| 0x00007ffc82475438 (rsp+0x0018) | a0 86 86 93 01 00 00 00 | 0x00000001938686a0 |
| 0x00007ffc82475440 (rsp+0x0020) | 24 87 86 93 29 7f 00 00 | 0x00007f2993868724 |
| 0x00007ffc82475448 (rsp+0x0028) | 08 00 00 00 00 00 00 00 | 0x0000000000000008 |
| 0x00007ffc82475450 (rsp+0x0030) | 41 41 41 41 41 41 41 41 | 0x4141414141414141 |
| 0x00007ffc82475458 (rsp+0x0038) | 00 00 00 00 00 00 00 00 | 0x0000000000000000 |
| ... |
| 0x00007ffc824754b8 (rsp+0x0098) | 00 00 00 00 00 00 00 00 | 0x0000000000000000 |
| 0x00007ffc824754c0 (rsp+0x00a0) | d0 11 40 00 08 00 00 00 | 0x00000008004011d0 |
| 0x00007ffc824754c8 (rsp+0x00a8) | 50 54 47 82 fc 7f 00 00 | 0x00007ffc82475450 |
| 0x00007ffc824754d0 (rsp+0x00b0) | 00 65 47 82 fc 7f 00 00 | 0x00007ffc82476500 |
| 0x00007ffc824754d8 (rsp+0x00b8) | c7 1f 40 00 00 00 00 00 | 0x0000000000401fc7 |
+---------------------------------+-------------------------+--------------------+
The program's memory status:
- the input buffer starts at 0x7ffc82475450
- the saved frame pointer (of main) is at 0x7ffc824754d0
- the saved return address (previously to main) is at 0x7ffc824754d8
- the saved return address is now pointing to 0x401fc7.
- the address of win() is 0x401833.
If you have managed to overwrite the return address with the correct value,
challenge() will jump straight to win() when it returns.
Let's try it now!

Figure 3. Memory Errors teaching variant.

2.3.3 Memory Errors

Memory errors occur when a user is able to corrupt memory they’re not supposed

to, the result of which can have brutal effects and may enable significant control over

a program. To understand this concept requires an understanding of a program’s

runtime as it uses control flow metadata, common issues surrounding buffer overflows

and buffer overreads, as well as the impacts of static and dynamic memory layouts.

Over the course of this module, we guide students from a simple overflow into a

boolean variable through a number of complex concepts that require students to

reason about security mitigations, exploitation in partial-knowledge settings, and

other concepts. To reduce the number of concepts they have to consider, we provide

a “win” function for students to eventually redirect execution to, rather than forcing

them to reason about shellcode.

Teaching challenges in this module display critical memory data, especially control

data stored on the stack such as return addresses, canaries, and saved registers, as

shown in Figure 3. While this information is accessible through a debugger, having
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$ echo -ne "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA\t'@\x00\x00\x00\x00\x00<\x00\x00\x00\x00\x00\x00\x00
'@\x00\x00\x00\x00\x00*\x00\x00\x00\x00\x00\x00\x008'@\x00\x00\x00\x00\x00" | /challenge
Received 160 bytes! This is potentially 5 gadgets.
Let's take a look at your chain!
Note that we have no way to verify that the gadgets are executable from within this challenge.
You will have to do that by yourself.
+--- Printing 6 gadgets of ROP chain at 0x7ffeed754998.
| 0x0000000000402709: pop rax ; ret ;
| 0x000000000000003c: (UNMAPPED MEMORY)
| 0x0000000000402720: pop rdi ; ret ;
| 0x000000000000002a: (UNMAPPED MEMORY)
| 0x0000000000402738: syscall ; ret ;
| 0x0000000000000000: (UNMAPPED MEMORY)
Leaving!
$ echo $?
42

Figure 4. Return Oriented Programming teaching variant.

it readily available allows students to focus on understanding the concept first, then

understanding the debugger later.

2.3.4 Return Oriented Programming

Return Oriented Programming (ROP) is a code reuse attack in which attackers

redirect control flow not to injected shellcode (for example, because Data Execution

Prevention mitigations leave no place for executable shellcode), but to a series of

disjoint sets of instructions (termed gadgets), with control flow transfers facilitated by

ret instructions coupled with attacker control of the program stack. Throughout this

module, we guide students from first calling a single function, to chaining multiple

functions, and gradually through the chaining of ROP gadgets in complex scenarios.

Analogous to Shellcode Injection, teaching challenges disassemble the ROP chain

that would be executed before executing it. This is a feature not seen even in popular

debuggers, and helps students understand what is happening when their ROP chain

executes.
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This challenge can manage up to 1 unique allocations.
[*] Function (malloc/free/puts/read_flag/quit): malloc
Size: 407
[*] allocations[0] = malloc(407)
[*] allocations[0] = 0x5630d7b702c0
[*] Function (malloc/free/puts/read_flag/quit): free
[*] free(allocations[0])
+================+=================+==========+======================+=====================+
| TCACHE BIN #24 | SIZE: 393 - 408 | COUNT: 1 | HEAD: 0x5630d7b702c0 | KEY: 0x5630d7b70010 |
+================+=================+==========+======================+=====================+
| ADDRESS | PREV_SIZE (-0x10) | SIZE (-0x08) | next (+0x00) | key (+0x08) |
+----------------+--------------------+---------------+---------------+--------------------+
| 0x5630d7b702c0 | 0 | 0x1a1 (P) | (nil) | 0x5630d7b70010 |
+------------------------------------------------------------------------------------------+
[*] Function (malloc/free/puts/read_flag/quit): read_flag
[*] flag_buffer = malloc(407)
[*] flag_buffer = 0x5630d7b702c0
[*] Read the Flag!
[*] Function (malloc/free/puts/read_flag/quit): puts
[*] puts(allocations[0])
Data: FLAG{...}

Figure 5. Dynamic Allocator Misuse teaching variant.

2.3.5 Dynamic Allocator Misuse

In recent years, attackers have bypassed exploitation mitigations by abusing

dynamic memory allocators to achieve full control of program memory. This has

historically been considered a somewhat secret art, and mostly explored in high-skill

CTFs. To keep things tractable for students, this module mostly focuses on the details

of the implementation of the tcache allocation caching layer of Linux’s glibc, attacks

against which are simpler than the general case of allocator misuse.

The teaching variants display the current state of tcache, including cached alloca-

tions and any relevant metadata, as shown in Figure 5. While, again, there are tools

that can perform this function, including this in the challenge enables students to

tackle the problem head on without any impediments.

2.3.6 Sandboxing

Sandboxing is the practice of isolating code to limit attacker capabilities during

exploitation. While many courses discuss this concept within systems security, we

have found few that actually introduce labs or challenges which practically explore
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it. To maximize ease of learning, this module assumes arbitrary code execution has

already been achieved (by directly running the shellcode that students have learned to

write in the previous module) in order to focus entirely on the sandboxing mechanism

itself. The specific sandboxing mechanisms used evolve over the course of the module,

exposing students to different sandboxing scenarios.

The teaching variants describe the jailing process as it happens, describing the

resources that are available at what point of challenge execution.

2.3.7 Race Conditions

Concurrency errors are some of the trickiest and least-understood software bugs.

Because they occur in many different contexts and are dependent on the specifics of the

software in question, the teaching of concurrency errors seems to be less common than

the teaching of other software errors. Our challenges progress from filesystem-based

time-of-check to time-of-use (TOCTOU) attacks into complex mutex issues in memory,

allowing students to gradaully familiarize themselves with underlying concepts.

As challenges get more intricate, introspecting the program and reason about what

impact they may have at what point in execution becomes difficult. Teaching challenges

in this module stall the program in critical areas, allowing students to experiment

with carrying out their attack without time pressure (and resulting implementation

difficulties in scripting fast attacks) before resuming the challenge execution at their

leisure.
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2.3.8 Kernel Security

The security of operating system kernels is considered to be a very advanced topic.

Undergraduate OS courses rarely cover interactions with the kernel in any significant

way, and undergraduate security courses rarely talk about the kernel at all (other

than its effects of memory allocation and permissions). Our challenge design allows us

to not only discuss the kernel, but instill in our students a deep-seated understanding

of its security implications. This module has a fundamental effect on students in the

sense that it expands their experience from “program” hacking to “system” hacking:

the first time a student single-steps into (as opposed to over) a syscall instruction to

find themselves debugging the kernel syscall handler, their perspective fundamentally

expands beyond a typical undergraduate security course.

Teaching variants log outputs of kernel APIs used by the vulnerable code. This

allows students to, for example, understand what data the kernel accesses from

userspace applications.

2.4 Integration Challenge Design

To truly achieve proficiency, students must put the individual concepts learned in

the modules above together into an end-to-end understanding of cybersecurity. We

created two such integration modules: one focusing on the exploitation of individual

programs (integrating Shellcode Injection through Memory Errors), and one focusing

on the exploitation of multi-component systems (integrating all of the material).

These challenges, despite their complexity, are combinations of prior modules. The

teaching variant actions in those prior modules are preserved wherever possible.
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2.4.1 Program Exploitation

As with the single-concept challenges, a core tenet of the progression is the gradual,

bit-by-bit increase in complexity. Thus, the challenges start with a very simple buffer

overflow, and become increasingly complicated from there. The final challenge of this

module is a version of the VM from the Reverse Engineering module, reimagined as

a realistic just-in-time compiler-based rather than interpreter-based VM. Students

discover memory corruption issues within the virtual machine to hijack control flow of

the program, then abuse the just-in-time compilation to introduce precisely-crafted

shellcode. This sort of end to end exploit is conceptually similar to what modern web

browser exploits against actual JavaScript engines look like in the real world.

2.4.2 System Exploitation

The second integration module extends into advanced material, exploring, e.g., the

impacts of Race Conditions to enable Dynamic Allocator Misuse in multi-threaded

software. These challenges convey two concepts: the chaining of radically different

vulnerabilities to achieve a goal impossible with either vulnerability alone, and the

importance of knowledge of the interconnectedness of program memory regions during

exploitation.

These challenges integrate Kernel Security by reimagining the VM from the Reverse

Engineering module as a kernel subsystem (similar to the BPF VM that powers the

Linux kernel’s network and system call firewalls). The final challenge (again, a series

of challenges gradually leads to cumulative increases in complexity) requires students

to perform a multi-stage exploit using concepts from all of the prior modules to first
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race heap operations to achieve arbitrary code execution in a sandboxed userspace

program, then pivot to attacking the virtual machine kernel subsystem by racing

threads to induce memory corruption in the kernel, get a kernel pointer leak, and

achieve arbitrary code execution in the kernel, all in order to finally disable the

properly-configured seccomp sandbox (by rewriting relevant kernel data structures

that track process sandboxing state), escalate privileges to root (again, by carefully

corrupting kernel data structures), and get the flag.

2.5 Discussion

2.5.1 Smoothing Learning Curves

As challenges are responsible for progressively introducing concepts, it is critical to

minimize jumps in difficulty throughout the progression of a module. We can measure

difficulty jumps by analyzing discontinuities in challenge solve progressions in terms

of the percentage of students solving each challenge. In our experience, when a large

drop in solutions exists between one challenge and the next, it means that the more

difficult challenge is conveying too many concurrent concepts. These concepts should

be broken apart into one or more intermediate challenges which build up to that

original difficult challenge.

A representative example of this evolution is our Reverse Engineering module.

The Fall 2020 iteration of our course had a massive difficulty jump approximately

70% through the module, resulting in half as many solves as the previous challenge.

This occurs when the first virtual machine reverse engineering challenge is introduced.

Compared to the prior (much simpler) “crackme” challenges, students were required
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to understand numerous new concepts concurrently in order to solve the challenge:

obfuscation, interpretation of bytecode, and the use of complex data structures. Many

students failed to make this jump. To remediate this, we added several conceptually

simpler challenges in Fall 2021 to prepare students for this challenge. We did this

by initially introducing pieces of the VM just as obfuscation for normal code logic,

initially avoiding any sort of interpreter loop (and subsequent handling by the VM

of its own control flow) or embedded VM instruction interpreters. Over the course

of a number of challenges, we introduced these sub-concepts one by one, making it

much easier for students new to reverse engineering to adapt. This resulted in a

much smoother challenge progression and dramatically improved student success. As

opposed to the 50% drop in solves of the first VM challenge, no challenge in Fall 2021

had a solve drop of more than 10%. At this point, we hit a limit in curve smoothness:

in 2022, we added additional intermediate challenges because we felt that obfuscation

concepts could be introduced even more slowly, but we did not observe a similar

improvement in solution rates over Fall 2021.

2.5.2 Challenge Generation

We developed pwnshop, an open-source (available at https://github.com/

pwncollege/pwnshop), template-based system for generating and maintaining our

hundreds of individual challenges. This system leverages Jinja [40] as a templating

layer on top of C source code. In doing so, we can conditionally include or exclude

code, which is crucial for maintainably generating a challenge with just a small differ-

ence compared to a previous challenge. This capability enables us to fix a bug in a

challenge (for example, disabling output buffering), and having that fix propagate to
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all challenges that are based on that template. Furthermore, this allows us to generate

challenges with randomized values, such as randomized passwords or randomized

memory layouts. The benefits of this approach are twofold. First, it allows us to

generate more versions of the same fundamental challenge, which can be useful for

increasing student’s practice with a particular concept (for example, calculating buffer

overflow offsets). Second, it allows us to generate challenges that are unique to each

student, which can be useful for preventing students from sharing complete solutions

with each other. In order to make sure that the challenges are still solvable, we have

verify scripts that can solve any version of a challenge, and we use these scripts to

verify that the challenges are solvable before they are released to students.

2.5.3 Refining Core CS Concepts

An interesting benefit of our challenges to students is the solidification of earlier

Computer Science concepts that students may have previously missed. For example,

despite many students having prior experience with process scheduling in our institu-

tion’s Operating Systems course, many of our students did not seem to truly “get” the

concept until they had to exploit process scheduling intricacies to attack programs

in the Race Condition module. We observed similar effects with concept missed in

students’ Computer Organization courses, and with privilege and memory isolation in

the Kernel Security module.
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Figure 6. Survey Responses. Total number of participants to respond positively
(postive values) and negatively (negative values).

2.6 Evaluation

2.6.1 Survey

To understand the effectiveness of challenge-based learning and our challenge

design, we distributed an IRB-exempt (minimal harm) survey to our students. They

survey contained both quantitative (Likert scale) and qualitative (free response)

components. Since our challenges are openly and freely accessible to learners around

the world, we received a wide variety of responses from 200 total respondents. In this

section, we distill these responses into insights about the potential of our proposed

learning approach.

We present our Likert question results in Figure 6. Our style of challenge-based
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learning was popular: 93.1% of students reported liking challenge-based learning and

92.6% reported significant learning from these challenges. Students almost universally

appreciated the immediate feedback. Our “teaching-variant” challenges were quite

well-received, with 84.8% of students reporting being helped by them. Likewise,

84.7% of students learned something new from solving individual challenges and were

satisfied with our challenges’ difficulty progression. In fact, 82.2% of students prefer

more challenges, despite this course obtaining a reputation as the hardest course in

our department. There does not appear to be consensus of whether these additional

challenges should be on the easier or harder end of the progression. Overall, 88.1% of

students would prefer more of their learning to be challenge-based. Questions about

individual modules also confirmed the aforementioned refinement of Computer Science

concepts.

Another theme was the duality of challenge frustration and the satisfaction derived

from solving them. During course design, we often strive to avoid frustration (for

example, by smoothing difficulty curves between challenges), but the framing of the

responses suggests that some frustration might incentivize students to push through

and “defeat” the challenge. In several modules, including Race Conditions, Kernel

Security, Memory Errors, and Dynamic Allocator Misuse, students reported that

carrying out attacks against related weaknesses helped them develop code resilient to

such flaws. Further exploration of this phenomenon could be valuable to the Software

Engineering field.

The qualitative responses shed light on some subtleties. While students find

challenge-based learning rewarding and engaging, some note that the nature of the

class can be “frustrating”, and that some challenges are repetitive or lack guidance.

Even on these, students enjoy the practical application of skills and the immediate
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feedback on their progress. Free form responses confirm that students appreciate the

progressive difficulty within modules and the self-pacing that they enable. However,

they suggest various offering lab time for hands-on, guided assistance with concepts

to prevent languishing among the student body. Overall, they believe that challenge-

based learning is an effective approach for cybersecurity education but there are clear

paths for refined execution.

2.6.2 Follow-on Course

To assess how well the skills acquired from our challenge-based learning approach

translated into practical applications, we created a follow-on course on applied vulner-

ability research. This course was offered to students who had successfully completed

all challenges from our preliminary challenge-based learning course. The objective

of this course was to give students the opportunity to find and responsibly disclose

vulnerabilities in real-world open-source software. A total of 19 students enrolled in

this course, forming 5 teams. The teams analyzed a variety of projects including PHP,

MuJS, Pillow, Radare2, and a popular Gameboy Advanced emulator. All teams were

able to find zero-day vulnerabilities in their respective projects, with several of those

vulnerabilities translating into CVEs and a more secure global software ecosystem.

Students focused on reverse engineering, automated vulnerability discovery (fuzzing),

crash triaging, exploit development, and responsible disclosure.

While we haven’t conducted a rigorous evaluation, it appears the skills from

our challenge-based learning approach—especially in exploitation processes, reverse

engineering, and modern exploit techniques—played a significant role in the course’s

success. There is a significant breadth and depth of knowledge and skills required
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to even begin real-world vulnerability research; students must be able to understand

threat models, and understand the technical implication of how different exploit

primitives can be used together to exploit a vulnerability in order to truly compromise

a system’s security boundaries. We relied on the fact that all students in this course

had, for example, already successfully abused dynamic allocators to leak information,

bypass PIE, perform an arbitrary write, and achieve code execution through ROP—

and had done so in several contexts, with different constraints, and spent hours

debugging these exploit chains to completion. This allowed us to focus exclusively

on the more advanced aspects of how to apply these skills to real-world software,

with the aid of modern vulnerability research techniques. We are unaware of any

other undergraduate university course that has been able to successfully teach these

pre-requisite skills to students to the extent that we achieved.

Interestingly, we also discovered that while students were more than capable of

producing exploits for the vulnerabilities they discovered, and several did, they were

more interested in reporting the vulnerability without a full exploit, so that they

could move on to finding more vulnerabilities. This in turn suggests that there are

two critical tracks in vulnerability research: the ability to find vulnerabilities, and

the ability to exploit them. While in this chaper we primarily focused on the latter

and happened to achieve the former, further research is needed in order to better

understand how this style of material can be optimized explicitly toward finding

vulnerabilities in real-world software.
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2.7 Conclusion

In this chaper, we described a design for a challenge-based cybersecurity curriculum

that combines single-concept modules and integration modules comprised of challenges

that gradually increase in complexity (conveying sub-concepts one by one) and help

guide students through their own solutions. In running cybersecurity courses with these

challenges, we observed not only great efficacy in student outcomes in cybersecurity,

but a radical refinement of their understanding of core Computer Science concepts.

To help the educational community, we have made these challenges, as well as the

accompanying lecture material, freely available to the world.
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Chapter 3

DOJO: APPLIED CYBERSECURITY EDUCATION IN THE BROWSER

Figure 7. Emblematic Learning Curve: PWN + DOJO

The DOJO infrastructure is designed to support the PWN methodology,
and in doing so, shortens the learning curve for cybersecurity education.
Students are able to immediately begin working on cybersecurity challenges
to learn cybersecurity concepts, entirely within the browser, without
the need for any additional software or hardware. Teachers are able to
immediately deploy new challenges and other educational materials, which
are immediately available to all students. In doing so, we are able to
significantly reduce the barrier to entry for cybersecurity education.
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3.1 Introduction

In the rapidly evolving landscape of software development, containerization has

been instrumental in ensuring portability and reproducibility of production, testing,

and more recently, development environments. By bundling all of the dependencies

required for a system within a single portable container, developers can effortlessly

set up an identical version of a live working system, implement modifications, validate

them, and deploy to production, ensuring a consistent behavior across different

environments.

The profound impact of this approach is not limited to production and testing.

Developers are now leveraging containerized development environments to streamline

and standardize their workflows [34]. This paradigm offers immediate access to a fully

configured development environment, with all essential tools, from compilers and linters

to debuggers and profilers, pre-installed and set to go. Such an environment mitigates

the challenges of individualized setups and fosters team consistency, especially aiding

novice developers who might be daunted by the intricate setup processes.

GitHub Codespaces, a cloud-based service, exemplifies this trend by offering

developers the capability to set up their development environment, filled with necessary

tools, on a robust machine that can be accessed universally [33]. This not only

expedites the code development and testing process but also enables quick onboarding,

particularly useful when working with various devices or when switching to a new one.

A parallel can be drawn in the realm of applied education, where such containerized

environments are being integrated [52, 53]. Novice learners, akin to new developers,

often face challenges in setting up their learning environments, which may serve as

deterrents to their educational pursuits. Addressing these barriers becomes paramount,
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especially in fields like cybersecurity, where the demand for trained professionals

outstrips the supply due to a lack of hands-on experience and effective training

methodologies [23, 39].

Given the pressing need for effective learning environments and drawing inspiration

from the containerization wave in software development, we introduce DOJO, a platform

designed specifically to facilitate hands-on cybersecurity education. DOJO adopts

principles from the realm of Capture The Flag competitions [24], wherein learners are

tasked with solving challenges, thereby obtaining flags as evidence of their newfound

skills. Instead of imposing the onus of environment setup on learners, DOJO offers a pre-

configured environment, available through both browsers and SSH, allowing students to

dive into hands-on cybersecurity challenges instantly. In contrast to existing platforms,

our primary focus is to allow students to execute every step—discovery,

implementation, and debugging—of even the most advanced and technical

challenges directly within the DOJO environment.

DOJO is freely available for use at https://pwn.college/ and is open-source at

https://github.com/pwncollege/dojo. Educators can seamlessly launch their own

version of DOJO on their own hardware with a simple docker run or establish a

private dojo on our hosted platform using just a git push, incorporating their own

challenges or leveraging our existing ones. Over the last 5 years, DOJO has been

used by more than 10,000 students from over 100 counties and over 100 academic

institutions. We know of at least 10 courses around the world that have used DOJO

as a critical component of their curriculum. In total, DOJO has facilitated more than

1,000,000 challenge solves, and has attracted thousands of learners with no course

requirement or incentive other than the desire to learn.

In this chaper, we explore the architecture and ethos behind DOJO, specifically
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focusing on the infrastructure itself rather than the educational content that may be

hosted within it. Our insights, shaped by its creation and enriched by our personal

interactions with it, are further enhanced by direct feedback from students. This offers

readers an authentic look into students’ experience with using DOJO. While our lens is

primarily on applied cybersecurity education, the insights shared may have broader

relevance.

3.2 Related Work

There are various projects that address the challenge of providing students with

access to a learning environment that enables them to work on hands-on challenge

problems and experiment with cybersecurity concepts. This section delves into the

relevant existing works and compares them with our contribution. Moreover, we have

provided a summary of the significant features of our work, in relation to notable

projects in the field, in Table 1.

3.2.1 Capture The Flag Projects

Capture The Flag (CTF) is a cybersecurity competition style in which flags

(represented by secret data stored in privileged areas of a system) must be captured

(disclosed and redeemed for credit) by participants through compromising the security

of some system. Recently, CTF has been increasingly used in cybersecurity education [5,

28, 57, 14, 63].

Among CTF projects, picoCTF [15] is the most similar to DOJO. It offers a challenge

frontend (to view what challenges are available), backend (to run challenges), and
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working environment (to work on challenges). A key difference from DOJO is that the

challenge environment and working environment are separate. The provided working

environment grants users remote capabilities when interacting with the challenge

(e.g., over netcat), reducing introspection capabilities and hampering student abilities

to reason about what is happening. Additionally, the working environment is only

accessible through a simple in-browser terminal (a solution which DOJO once used,

but has since iterated and improved on), not SSH (advanced users may prefer), VS

Code (for editing code), or a desktop environment (for graphical interface tools).

Furthermore, the project is no longer under active open-source development, although

a public version of the infrastructure is available and maintained, especially for the

yearly picoCTF competition.

"Its cool that DOJO provides an environment for solving challenges and without

it, I would have to set up my own environment (creating a VM, installing necessary

packages, fighting to getting correct dependencies and so on). This is where picoCTF

falls behind (although its also a good website for CTF)." Student Feedback

CTFd [16] is a very popular frontend for running CTFs. However, all though

some features for running challenges are available, it is not the primary focus of the

open-source project. Furthermore, a working environment is not provided. Root The

Box [10] and fbCTF [30] are other popular frontends. kCTF [35] is a popular backend

for running challenges on Kubernetes, but does not provide a frontend. iCTF [90]

allows users to run an attack-defense CTF, in which participants exploit each other

participant’s vulnerable services, and likewise defend against attack.
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3.2.2 Wargame Platforms

Wargames are collections of sometimes-educational challenges available for partici-

pants to tackle. OverTheWire [97] and pwnable.kr [74] offers participants the ability

to access a number of challenges through SSH. pwnable.tw [75] and archive.ooo [69]

only allow remote interactions (e.g., over netcat), and do not provide a working

environment. While the former two offer some visibility into the challenge environment,

the latter two are modeled strictly from the perspective an external actor. An under-

standing of the environment is only made possible through this remote interaction,

and file downloads of the underlying programs. In the case of all four of these projects,

and in contrast to DOJO, introspection and tooling are not a focus: a local working

environment is necessary.

3.2.3 Cyber Range Projects

Cyber Ranges are designed as environments for exploiting software in a manner

that more closely mirrors real-world scenarios. They often target known vulnerabilities

in actual software, making them a more realistic training ground compared to the

more game-like nature of CTFs.

KYPO [92] most closely aligns with DOJO as it combines the challenge and work

environments. Students move from an initial scenario accessible via SSH or an in-

browser desktop to larger challenge environments. However, KYPO only supports

features required by the challenges themselves, and excludes critical debugging and

troubleshooting functionality. This design reflects the constraints of real-world sit-

uations, but hampers the ability for confused students to fix their understanding.
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CTFd  G# -  G#     - - - - - - - - - -
CTFd Enterprise   G#  G# -    -  - -  - - - - -
picoCTF    G#     -   -  - -   -
fbCTF  - - G# -     - - - - - - - - - -
Root The Box  - -  G#     - - - - - - - - - -
kCTF -  -  -  G#  -  - - - - - - - -
iCTF   G#  G#  G#G#G#  G# -  - - -  -  

OverTheWire   G# -   G#G#  - -  - - - - - -
pwnable.kr   G# -    - -  - -  - - - - - -
pwnable.tw   - -     - - - - - - - - - - -
archive.ooo   -       -  - - - - - - - -

SecDevOps@Cuse - G#G# G# -  G#G#G# G#  - G# - - - - G# -
Alpaca - G#G# G# -  G#G#G# -   - - - - - - -
SecGen - G#G# G# -  G#G#G# -   - - - - - - -
CyTrONE G# G# G# -  G#G#G# G#  - G# - - - - G# -
KYPO   G#  -  G#G#G#   -  - -  - G# -

TryHackMe   G# -  G#  G#G# G#  - G#G# - G# - G#G#
TryHackMe Premium    -  -  G#G# G#  - G#G# -  -   
HackTheBox   G# -  G#  G#G# - - - G# - - G#G#G#G#
HackTheBox VIP    -  -  G#G# -  -  - -     
RET2 Wargames    -  G# - - -   - - -  G# - G# -

DOJO       G#G#G#           

 = provides property; G# = partially provides property; - = does not provide property;

Table 1. Features of Cybersecurity Education Projects. The projects are grouped
into, in order, CTF Platforms, Wargames, CyberRange Projects, and Commercial
Training Platforms, as described in Section 3.2.

In contrast, DOJO optimizes for transparency and debuggability within the challenge

environment, giving students critical tools to maximize understanding. Additionally,

KYPO’s infrastructure is resource-intensive: catering to a large student cohort is

challenging because KYPO relies on individual virtual machines for every student

instead of DOJO’s more efficient container approach [73]. For scale, the KYPO project
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recommends that students run virtual machines locally, forgoing the benefits of a

turnkey, centralized environment.

CyTrONE [8] is a challenge hosting backend, but it lacks a centralized working

environment and even a challenge frontend (instead, it uses the Moodle Learning

Management System [60]). SecDevOps@Cuse [81] places some emphasis on including

security tools in its working environment, but does so without a challenge frontend.

Projects like Alpaca [29] and SecGen [80] craft challenge environments dynamically

from vulnerability datasets, but do not focus on students’ working environments.

3.2.4 Commercial Training Platforms

TryHackMe [88] has both a challenge environment, and a working environment.

Challenge environments vary dramatically from challenge to challenge. For some

challenges, the challenge environment serves as the working environment. However,

in cases where the challenge environment is either remote (e.g., some service is only

accessible over the network), or tooling is insufficient within the local challenge

environment, an additional dedicated working environment is provided. Within the

working environment, students have access to a standardized set of tools and privileged

access to further customize the environment. The dedicated working environment

may only be accessed from an in-browser desktop. HackTheBox [9] has separate

challenge environments and working environments. The working environment contains

a standardized set of tools, with the ability to persist a student’s working data across

challenges, and privileged access to further customize the environment. However,

the working environment is not the challenge environment. It is an environment

from which students can work on the challenge, with the same effective capabilities
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Figure 9. DOJO’s browser-based workspace. Left: VS Code, text editor alongside a
terminal. Right: GUI reverse engineering tool.

that local working environments have. This prevents full challenge introspection

and debugging, as enabled by DOJO. RET2 Wargames [78] has a tightly integrated

challenge and working environment. Students work in a web environment which

simulates standard tools in order to solve the challenge. However, arbitrary tools are

not available, and because tools are simulated, the transferability of learned knowledge

beyond the simulated environment may be hampered.

3.3 Dojo Design

Our priority in designing DOJO was to maximize the ease of challenge access for

students, and of challenge deployment for instructors. In doing so, we leveraged a

number of existing technologies, focusing on smooth integration. DOJO takes inspira-

tion from developments in cybersecurity competition, specifically from Capture The

Flag competitions [24], and expands them to accomplish our goal of democratizing

cybersecurity education access.
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Figure 8. The overall design of DOJO. Student environments are isolated in containers,
managed by a series of other components. For coursework that requires it, DOJO can
run nested virtual machines (for example, with vulnerable kernel configurations).
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3.3.1 Challenge Environments

DOJO heavily extends the CTFd framework, which is popular for facilitating simple

one-off “Jeopardy-style” CTFs [16]. CTFd manages user accounts, tracks flag submis-

sions, and provides a basic web interface which lists the challenges and displays a

scoreboard. DOJO builds upon CTFd to provide a long-term comprehensive environment

for students.

In standard CTFs, participants are given a downloadable challenge program or

instructions for how to communicate with a remote running challenge (for example, nc

<IP> <PORT>). We have expanded upon this by providing students with a dedicated

containerized environment for each challenge, which they can start when they are

ready to work on it. Once started, the container contains the challenge and any other

necessary files in its filesystem.

Inspired by CTFs, DOJO stores a /flag file in each container, which students access

by solving the challenge and then submit to DOJO to count the solve. The /flag file

is only accessible to challenge programs, which have SUID permissions to enable this

access. DOJO ensures that no other files are SUID, reducing the risk of inadvertent flag

retrieval due to environment misconfiguration. This method highlights the advantages

of a centralized educational platform over local setups where students might have

unrestricted access. Further, it immediately conveys to students when they have

completed the challenge.

"DOJO removes a lot of the frustration involved with “it compiles on my machine,

but not the grader’s”." Student Feedback
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3.3.2 Working Environments

3.3.2.1 Extensive Tooling

Students work on challenges in the same environment that hosts the challenge.

These containers come pre-configured with essential security tools. Currently the de-

fault DOJO challenge environment comes with ipython, tmux, strace, gdb, pwntools,

pwndbg, gef, radare2, ghidra, wireshark, nmap, scapy, requests, curl, and many

other tools. The goal is to allow students to execute every step of the challenge—

discovery, implementation, and debugging—directly within the DOJO environment.

"Hacking very often comes down to the most nitty gritty of details, and often

you need specific tooling to save time. Giving someone a set environment where all

of those details are controlled, and where they know they have all the tools they need,

is a godsend for learning." Student Feedback

This setup ensures consistent environments for students and allows new tools to be

added (for example, to support new types of challenges) by modifying the Dockerfile

of the challenge environment, which makes the change immediately available to

all students. This spares students from potential frustration in tooling setup and

eliminates time instructors might spend assisting students with installation problems.

3.3.2.2 Privileged Mode

DOJO also offers a privileged mode when starting the challenge. In this mode,

students work in an environment similar to the standard mode, but with additional

sudo privileges and a placeholder flag. With this root access, students can fully
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analyze and debug a challenge program, which is otherwise not possible in some

circumstances. For example, if challenge behavior is strictly dependent on being able

to access the flag (for example, to encrypt it), then any debugging of that challenge

must be done with flag access capabilities. This mode enables this without otherwise

leaking the actual solution flag until the student re-runs their final solution in the

standard mode, ensuring the integrity of the challenge.

3.3.2.3 Persistent Home Directory

In order to improve usability when switching between challenges and challenge

modes, DOJO persists the student’s home directory across all challenge environments.

This persistance is essential as it allows students to store previous solutions (for

reference and expansion), as well as custom scripts and tools. Critically, the home

directory is mounted with the nosuid option, which prevents students from smuggling

a root-owned SUID binary across different environments.

"I really like the infrastructure, and I much appreciate that you have permanent

storage! Even though I have most things set up locally, I still work in DOJO most of

the time." Student Feedback
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3.3.3 Environment Access

3.3.3.1 SSH

Students may access their challenge environment after starting a challenge in one

of three ways. The first way is through SSH. Students may upload a public key within

the DOJO web-interface, allowing them to SSH into DOJO and transfer files with scp.

"The fact that I can SSH into DOJO during lunch breaks makes this platform

stand out to me." Student Feedback

3.3.3.2 VS Code

The second way is through an Visual Studio Code running in the DOJO and

exposed through the student’s web browser [18], as seen in Figure 9. VS Code provides

a powerful text editor, command line terminal, file explorer (including file upload and

download), and a plugin interface with many community-created plugins.

"One of the biggest reasons I use VS Code to interact is because my device

becomes slow if I run a VM." Student Feedback

3.3.3.3 In-Browser Desktop Environment

The third way is through an In-Browser Desktop Environment, as can be seen

in Figure 9. This provides students with the ability to run arbitrary graphical user

interface programs (which is relevant in advanced security curricula, such as Software
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Reverse Engineering) from within the browser. This method makes it possible for

students to learn entirely through a student’s browser, enabling full DOJO access not

only from laptops, but also tablets or other mobile devices, entirely removing software

or hardware barriers to entry from the student’s perspective. Education is as simple

as starting a challenge, and then immediately having access to a full computing

environment, all from within the browser.

"I can’t stress enough how helpful DOJO was. Being able to access DOJO from

anywhere (home, work, etc.) meant I could pick up where I left off." Student Feedback

3.3.4 Challenge Virtualization

While docker works for a large number of challenge use-cases, it may not always

provide enough capabilities for some challenges. For example, a standard unprivileged

container cannot arbitrarily manage networking resources, hampering education in

network security. DOJO has two answers to these limitations.

3.3.4.1 User Namespaces

DOJO supports nested namespace virtualization, enabling challenges to create

arbitrary networking topologies, process isolation, and permission models (among

other namespace features). This requires DOJO to modify docker’s seccomp filter to

allow relevant system calls (e.g., unshare) and to create a user namespace to grant

necessary Linux capabilities to the challenge without compromising the security of

the overall DOJO system.
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While this is intended to be secure according to the namespace security model,

unprivileged user namespaces have previously caused serious kernel vulnerabilities.

As the implementation of this Linux subsystem continues to mature, more vendors

have been willing to trust this configuration, and it seems likely that these features

may be supported by default in a future version of docker.

3.3.4.2 Virtual Machines

Nested namespace virtualization does not support all challenge use-cases. Names-

paced processes operate within a single shared kernel, which cannot securely support

challenges including, for example, vulnerable Linux kernel modules. Furthermore,

some scenarios might demand the operation of an entirely different kernel—for exam-

ple, to run varying versions of Linux, or even a completely different OS like Windows

or MacOS. To overcome these limitations, DOJO supports both virtualization and

system emulation within the user container.

Critically, our virtual machine implementation transparently shares the container’s

file system. This means that all files are automatically shared between the container

and virtual machine, and that modifications in one environment are immediately

reflected in the other. This includes the persistent home directory (see Section

3.3.2.3). This feature eliminates hurdles of transferring solution and debug code

into traditionally-minimal environments running in vulnerable kernels, which has

traditionally frustrated students tackling such problems. To our knowledge, DOJO is

the first cybersecurity environment with this capability.

DOJO uses QEMU [7], with kvm providing near-native virtualization performance,

9p supporting the transparent filesystem mapping, and SLIRP mapping networking
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between the virtual machine and container. Connecting to the virtual machine happens

transparently over SSH. Debugging mode automatically connects to the QEMU gdb stub

and loads debug symbols from the virtualized kernel.

"For the kernel challenges, the DOJO infrastructure was very helpful. I could

probably have figured out how set up QEMU and stuff locally, but it would have taken

time and effort and I don’t think I would have gotten to it from never having tried

anything kernel before." Student Feedback

3.3.5 Instructor Capabilities

3.3.5.1 Environment Sharing

One unique capability is bidirectional information sharing. Instructors can broad-

cast their desktop environment (described in Section 3.3.3) to students, allowing

them to view what the instructor is doing live during lectures and demonstrations.

In the other direction, instructors have access to interacting with students’ desktop

environments (viewing and controlling) or alternatively access their environment

through SSH. Through this, an instructor can understand directly how a student is

approaching a problem, both real-time and after-the-fact by examining their solution

scripts. This capability makes it much easier for instructors to remotely assist students

with complex problems, which can be especially useful in a hybrid or online course.

Of course, this instructor access is not a surprise to students: students are informed

of these capabilities at the beginning of the course.
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3.3.5.2 Anti-Cheat

DOJO offers several generic anti-cheat mechanisms. To thwart the sharing of flags,

challenge flags are cryptographically generated for each challenge and user. This

allows DOJO to verify that a flag is correct for a specific user and challenge, and to

automatically detect flag sharing between students. To complicate the sharing of

solutions among students, rather than giving all students the exact same challenges,

instructors can specify multiple slight variations of the same challenge, with each

student being randomly assigned one variation. This requires students to develop a

solution which specifically solves their challenge.

3.3.5.3 Automatic Grading

In order to enable instructors to run courses with large numbers of students,

DOJO supports automatic grading. The DOJO exports detailed statistics on student

progress through challenges that instructors can use both for determining grades and

to understand how long students spend working on each challenge. Coupled with the

ability to view student desktops, and access student files, this allows instructors to

easily understand how the class is progressing, to identify students who are struggling,

and to identify students who are cheating.

3.4 Discussion

We have run courses (and portions of courses) at our university using DOJO for

several years, through various stages of feature refinements, in various courses (ranging
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from introductory to advanced). In this section, we discuss our observations and

experiences, in the hope that they are useful for future educators.

3.4.1 Deploying DOJO

DOJO is designed to be modified and deployed to support the greater educational

community. The infrastructure is contained within a single docker container that uses a

single directory on the host for all data storage and facilitates all DOJO communication

over ports 22, 80, and 443 for SSH, HTTP, and HTTPS. Once the image is built, and

container started, it automatically deploys all dependencies, generates a valid HTTPS

certificate, loads the database with instructor-provided challenges, and generates

persistent user home directories. Everything happens automatically. Each component

is isolated for easy customization, and core logic is engineered so that others may

make changes as they see fit.

Turnkey deployment has enabled DOJO’s use by our colleagues to facilitate several

courses at our institution and has been used by several educators around the world.

3.4.2 Supported Challenge Types

We have used DOJO to host challenges covering topics ranging from basic Linux usage

and shell scripting to network security, web security, cryptography, reverse engineering,

memory corruption, kernel security, and even microarchitecture speculative execution

attacks. One challenge type that we found inconvenient to support by DOJO are things

involving inter-student interactions, such as group-based GPG code-signing exercises.

This is a current focus of DOJO improvement for us.
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3.4.3 An Open Deployment

As an alternative to running their own DOJO instance, instructors can create a

private dojo inside our running DOJO instance with an arbitrary set of challenges.

This enables instructors to run security classes, using our cutting-edge infrastructure,

with no computing resources and nearly no setup. We know of eight universities in

five countries that use our centrally-hosted DOJO to power their actual cybersecurity

courses, and the infrastructure has become a standard way for student clubs to teach

their members about cybersecurity. This seamless usage of DOJO speaks to its potential

impact in the field of cybersecurity education.

3.4.4 Rapid Learning Launch

DOJO has facilitated accelerated cybersecurity workshops in settings where stu-

dents only had access to low-resource and non-privileged laptops. Having access

to an environment in which everything could be done in the cloud proved to be

invaluable for this experience. Students were able to show up and immediately dive

straight into the challenges without wasting already-limited time to get basic tooling

installed, or troubleshooting installation errors, or requiring exemptions to security

policies. Additionally, the ability to share DOJO screens through the browser facilitated

demonstrations without requiring access to a projector.
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3.4.5 Scaling and Compute Requirements

DOJO’s use of containers (rather than full VMs) for most challenges allows for

optimal usage of resources [42]. We currently run the central instance of the DOJO

infrastructure on a server, generously provided on a long-term basis by our institution,

with 40 cores, 256 GB of memory, and 8 TB of storage. In our experience, this has

been sufficient to run DOJO for over 10,000 registered users, with ample computing

resources still available. In fact, we have observed DOJO accommodating 250 concurrent

students without noticeable performance impact on individual users. The important

insight for understanding how so many users can concurrently utilize the system is

that most time is spent idle, as students contemplate ideas, in lightweight containers.

3.4.6 Impact of Feature Improvements

Over the years, we have observed the impact of improvements to DOJO on the

reduction of hurdles and frustration for students (especially novice ones).

One example is the workspace, which evolved significantly over the course of five

years. This started out as a netcat-based interface without persistent storage or a

GUI, resulting in significant load for students to configure local analysis environments.

Our next iteration provided an SSH-based environment and persistent home directories,

but the high student count at our institution resulted in a high instructor load even

helping students configure their SSH clients and helping them install GUI-requiring

security tools locally. Next, we deployed a fork of Google Chrome’s in-browser terminal

to eliminate the requirement for students to set up SSH, but still faced student and

instructor frustrations with local installation of GUI-requiring security tools and SCP
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clients for file transfer. In the next iteration, we addressed the SCP issue by upgrading

the terminal to a DOJO-hosted version of VS Code, which supports file transfer. Finally,

we added the in-browser, VNC-based desktop to provide centralized access to GUI

security tools. Each of these advancements reduced the amount of student frustration

(and may help explain a decrease in our security course drop rate) and instructor

support load for student tooling setup, the latter now reduced to near zero.

DOJO improvements have been even more keenly felt in the kernel security space,

which is described in Section 3.3.4.2. The initial DOJO VM support followed the

typical model of kernel security challenges in CTFs: a minimal VM with a vulnerable

kernel and an embedded userspace. We used this model for two years of kernel

security education, and found that students were actively discouraged from tackling

this material because of the difficulty of challenge interaction in this model, rather

than the difficulty of the challenges themselves. When we implemented the sharing of

the host filesystem between the challenge container and the vulnerable VM, student

frustration with interaction issues dropped to near-zero.

3.5 Evaluation

We conducted an IRB-exempt (minimal harm) survey to evaluate the impact of

the latest version of DOJO on student learning experience. We received 200 responses

from DOJO users around the world (including, but not limited to, students at our

institution). Feedback excerpts are replicated throughout the chaper, and results of

the quantitative portion of the survey are summarized in Figure 10, clearly showing

that students overwhelmingly prefer the DOJO over even their own local environments.

We also analyzed the data according to gender. Of gender reporting respondents,
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Figure 10. Survey Responses to 5-point Likert scale questions from 200 students about
their experience with DOJO.

89% identified as Male, 9% as Female, and 2% as other responses. DOJO is more

overwhelmingly preferred by non-Male students than by Male students. While 70.5%

of Male students prefer using the DOJO, 94.4% of Female students and 100% of

non-binary/other students do so. Similarly, a higher portion of non-Male students

(55.6% of Female students and 75% of Other students, compared to 41% of Male

students) had more concerns with the technical challenge of provisioning their own

environments. In a field struggling with gender inclusivity, we feel that any leveling of

the playing field is important, and hope that the DOJO can be a part of the puzzle of

increasing the gender balance in Cybersecurity.
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3.6 Conclusion

We developed DOJO, a state-of-the-art, open-source learning platform for hands-on

cybersecurity education that aims to minimize barriers for both students and instruc-

tors. We described its features, delved into technical implementation details, discussed

implications and our experience, and presented a survey of student experiences. DOJO

has been successfully used in multiple university courses and workshops, is open

source, and is available for free to the world. More than 10,000 students from around

the world have already benefited from using DOJO, and we hope that this is just the

beginning.
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Chapter 4

SENSAI: LARGE LANGUAGE MODELS AS APPLIED CYBERSECURITY

TUTORS

Figure 11. Emblematic Learning Curve: PWN + DOJO + SENSAI

The SENSAI tutor is enabled by the PWN methodology and the DOJO infras-
tructure, and is able to further improve the learning curve for cybersecurity
education. Students are able to seek help from SENSAI, which is able to
“look over their shoulder” and provide automated, immediate, individual-
ized feedback and guidance. In doing so, we are able to provide a more
individualized learning experience, at scale.
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4.1 Introduction

What should a student do when faced with a seemingly insurmountable challenge?

The answer is shockingly simple: ask for help. Receiving guidance from a tutor

has been a cornerstone of education for over a millennia—from Aristotle, who was

readily available to guide his pupil Alexander the Great, to today’s modern classroom

dynamics.

However, the modern educational landscape presents a unique challenge. As

education expands, it is difficult to maintain the tradition of personalized mentorship;

with large class sizes, a single instructor might be responsible for hundreds or even

thousands of students. While current research is split on the exact impact of class size

on educational outcomes [1], particularly in higher education, it is clear that more

students in a class decreases the time that a professor can devote to assisting any

particular student.

Teaching assistants can extend the reach of personalized mentorship and assistance,

but even with this additional layer of support, the student-to-educator ratio is often

significant. A lack of individualized assistance can be a significant barrier to learning.

If a student is stuck on a problem, they may not know how to proceed. Who should

they ask for help?

Peer-to-peer interactions have emerged as a potentially scalable solution, as the

capacity for peer tutoring grows with the student population. These methods offer

opportunities for students to exchange ideas, troubleshoot, and learn collaboratively—

leading to improved academic performance [100, 12]. However, there are clear draw-

backs: peers may lack the expertise and pedagogical skills of seasoned educators,

which can limit the depth and effectiveness of their guidance [43].
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Cybersecurity requires a deep understanding of many complex underlying com-

puting concepts as well as the ability to precisely apply these concepts in practice.

A lack of hands-on experience has been identified as a significant barrier to meeting

the demand for trained cybersecurity professionals [23, 39]. This lack of trained

cybersecurity professionals, in turn, leads to a lack of qualified cybersecurity educators,

which further exacerbates the problem of a lack of hands-on experience, and so, a lack

of trained cybersecurity professionals—a cycle that is difficult to overcome.

The advent of Large Language Models (LLMs) presents an exciting development

in the quest to retain individualized educational assistance. Capable of seemingly

understanding and processing a vast range of linguistic inputs, a key question is if

these models can bring us a step closer to a truly intelligent automated tutor that

can adapt its responses to the specific needs and context of a student. A key benefit

is scalability, as an increase in the number of students does not diminish the ability to

provide focused, individual attention. Furthermore, as the behavior of these models

can be directed towards an educational mission, they offer a solution to the limitations

associated with peer-to-peer interactions.

Unfortunately the capabilities of LLMs in this space are not yet fully understood.

Furthermore, off-the-shelf LLMs lack the ability to “look over the learner’s shoulder”,

to see how they are approaching a problem. This is important: learners often do not

understand the problem well enough to ask the right question—they don’t know what

they don’t know [84]. This is where a human tutor can be invaluable, as they can

observe the student’s approach, intuit their misunderstandings, and provide targeted

assistance.

In this chaper, we present SENSAI, an AI-powered tutoring system that leverages

LLMs to provide personalized feedback and assistance to students. Crucially, SENSAI
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features a novel design that automatically extracts the learner’s context—their recently

active terminals and edited files—when they pose a question. This allows SENSAI

to “look over the leaner’s shouler”, see what the learner is working on, and use this

specific nuanced context to provide personalized and direct assistance. We deploy

SENSAI across an applied cybersecurity curriculum at a large public R1 university, as

well as to a broader online community of global learners. We discuss the design and

implementation of SENSAI and further investigate its capabilities and impact. To gain

a deeper understanding of its influence on the learning experience, we manually review

over 500 SENSAI sessions and draw insights from these interactions, quantiatively

measure the impact of SENSAI, and survey learners to understand their experience.

Over the last six months, SENSAI has been used by 852 learners to assist with 504

educational challenges. This has led to an exchange of 34,108 messages across 3,583

sessions, for a total cost of $1,515—comparable to the cost of a single undergraduate

teaching assistant, but with a much larger reach. We show that access to terminal

and file context is crucial for SENSAI’s performance, noting a median solve time after

interacting with SENSAI of 3 minutes, 46 seconds for instances where SENSAI had access

to consistently “active” learner context, compared to 43 minutes, 48 seconds when

SENSAI did not have any access to the learner’s context—a more than 10x difference.

We further find that SENSAI is particularly effective at providing guidance on Python

and Linux commands, but less effective at providing guidance on Reverse Engineering

and GDB, where the context is more difficult to succinctly extract—limitations of the

context window—and the topics require a deeper understanding and methodology to

be effective—where the LLM’s “reflexive intelligence” is not as applicable. Overall, we

find that SENSAI is a useful tool that enhances the learning experience and shifts the

ratio of students to educators back in favor of the students.
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4.2 Background and Related Work

4.2.1 Large Language Models

At the heart of Large Language Models (LLMs) is a remarkably simple, yet

powerful concept: predicting the next token based on a sequence of preceding tokens,

a probabilistic process recursively repeated to generate (hopefully) coherent text. A

token is a single unit of text, such as a word or a punctuation mark. This prediction

task is trained over substantial volumes of text data, enabling the model to learn

patterns, contextual relationships, ideas, and rules of the language.

LLMs operate on a fixed-length context window, which is a sequence of tokens

that the model considers when making predictions. It’s important to note that this

window spans both the input prompt tokens and the output sampled tokens. During

it’s recursive process of token generation, the model focuses its attention [89] on this

combined pool of tokens within the window to sample the subsequent token. This

constraint necessitates careful crafting of input prompts and consideration of output

length to ensure all relevant information fits within the window.

The produced output text is derived from the model itself, and the prompt

provided. Prompt engineering is the process of designing the prompt to guide the

model towards the desired output. Crucially, this process is possible without requiring

additional—highly compute-intensive—training. Instead, prompt engineering requires

an understanding of how to give clear, unambiguous instructions and provide sufficient

context. OpenAI has published a guide to prompt engineering, which outlines six

strategies for improving the quality of the model’s output [66]:

1. Write clear instructions.
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2. Provide reference text.

3. Split complex tasks into simpler subtasks.

4. Give models time to “think”.

5. Use external tools.

6. Test changes systematically.

This capability of strategically crafting the input prompt is particularly beneficial in

an educational context, where the goal is not just to answer questions, but to foster a

more pedagogical approach to learning.

In the rapidly evolving landscape of LLMs, OpenAI’s GPT-4 [65] currently stands

at the forefront. This model operates within an 8,192-token context window, where a

token in OpenAI’s models, on average, equates to roughly 3/4 of a word. In practical

terms, this means the window can hold approximately 6,144 words, nearly matching

the transcript of a 40-minute lecture given at an average pace of 150 words per minute,

or 1000 lines of code at an average of 8 tokens per line. The context window size sets

certain boundaries, emphasizing the need for well-thought-out task design to keep the

balance between input and output. For example, summarization tasks might reserve

about 10% of the window for output, while more detailed explanatory tasks could

use over 50%. OpenAI has also released a preview of GPT-4-Turbo, a 128,000-token

context window variant of GPT-4, which could accommodate more than 10 hours of

lecture transcript, or 16,000 lines of code.

Other LLMs exist, including Google’s Gemini models [86] and Meta’s open-source

Llama 2 [55]. However, at this time of writing, GPT-4 is recognized as the most

intelligent model available [99, 37, 70].
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4.2.2 Cybersecurity Education

In the field of cybersecurity education, a significant focus is placed on providing

novices with applied practice, an approach that has been recognized as crucial for

effective learning. This hands-on experience is essential for students to grasp the

complexities and practical aspects of cybersecurity, as theoretical knowledge alone

is often insufficient for dealing with real-world challenges. The use of hacking as a

pedagogical tool has gained traction, emphasizing the importance of understanding

the inner workings of computer systems from a hacker’s perspective. This method not

only enhances students’ critical and creative thinking about computer systems but

also provides a deep understanding of system interactions and potential vulnerabilities,

as suggested by Bratus [11]. Applied cybersecurity labs focusing on various aspects,

such as SDN Security [71], Reverse Engineering [3], SQL Injection [6], and Android

mobile security [44], further underline the diversity and practical applicability of this

approach.

However, implementing effective hands-on practice for novices in cybersecurity

poses significant challenges. The complexity and specialized nature of the field can

be daunting for beginners, often requiring a gradual and scaffolded approach to

learning. Capture The Flag (CTF) events and similar competitions, like DEF CON

CTF [19], iCTF [90], picoCTF [15], and CSAW CTF [32], have been recognized for

their educational merit, providing a competitive and engaging platform for students

to apply their knowledge. Yet, these events can be overwhelming for beginners due to

their complex nature and the lack of partial progress indicators [17, 91]. Educators

have attempted to address these challenges by designing novice-friendly challenges [96],

providing mentorship and preparatory lectures [58], creating beginner tutorials and
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“level zero” challenges [95], progressive self-teaching challenges [62], and eliminating

the setup overhead of complex environments and tooling [61]. These efforts aim to

create a more accessible entry point for novices, allowing them to build confidence and

skills progressively. Unfortunately, however, novices still continue to face significant

barriers in understanding and solving cybersecurity tasks, often requiring substantial

guidance and support from educators.

4.2.3 LLMs in Education

ChatGPT and other Large Language Models (LLMs) have emerged as controversial

technology in the field of education (and beyond). Advocates hail them as the future

of education, and point out the importance in incorporating them into the classroom

to equip students for future job demands. Meanwhile skeptics raise concerns of their

potential misuse, and the need to ban them from the classroom and design AI-resistant

assignments [45]. Already, the current state-of-the-art, GPT-4, is possibly capable of

passing some assessments, such as multiple choice question tests and coding exercises,

in introductory and intermediate programming courses [79]. This underscores the

need for a shift in pedagogy towards creativity and critical thinking rather than rote

learning [85].

The utility of LLMs in assisting novice programmers is of notable interest. Research

from Hellas et al. [36] and Balse et al. [4] points out that LLMs, including Codex and

GPT-3.5, are adept at identifying coding errors but are not infallible. Leinonen et

al. [46] emphasize LLMs’ potential in refining programming error messages, though

results can vary. Moreover, Tian et al. [87] discuss the pros and cons of LLMs as

automated coding assistants. Reflecting these insights, Phung et al. [72] suggest
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GPT-4 often parallels human mentors in basic programming tasks but falls short

in feedback and task creation. Al-Hossami et al. [38] demonstrate the limitations

of LLMs in applying the Socratic method. In teaching scenarios, Markel et al. [54]

showcase the efficacy of GPT-driven systems in training Teaching Assistants (TAs)

in low-pressure environments. Despite GPT-4’s prowess in certain domains, Macina

et al. [51] demonstrate that tailored, smaller models can excel in niche areas such as

complex math challenges with appropriate fine-tuning on tutoring data.

Liu et al. [49] have deployed a widescale implementation of Large Language Models

(LLMs) to demonstrate their potential in tutoring massive introductory programming

courses with thousands of students. These models were utilized to provide learners with

simple explanations of their code, offer suggestions on coding style, and create a chatbot

for answering course-related questions. Feedback from students was overwhelmingly

positive, indicating the success of their approach.

While recent research focuses predominantly on the utility of LLMs in introductory

programming tasks, this chaper delves into their potential in applied cybersecurity

education—an intricate domain. Here, the problem is not a straightforward statement,

and the solution is not a few dozen lines of code that the LLM has seen a thousand

times before. Instead, solution paths might involve reverse engineering a binary to

perform a buffer overflow or conducting a SQL injection via a blind interaction with a

web application. Successful problem-solving requires learners to engage with analytical

tools and exercise critical thinking to make progress. Therefore, an efficacious LLM

tutor must dynamically understand a learner’s ongoing progress, offering timely and

pragmatic feedback.
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4.3 SENSAI Design

Our goal was to develop an effective AI cybersecurity tutor. Such a system must

understand not only the surface-level question but also the context within which it

arises. We designed SENSAI to achieve this goal, and specifically to extract, interpret,

and apply the context of a student’s question to generate relevant and accurate

responses.

4.3.1 SENSAI’s Environment

Understanding context is critical in education. A question posed by a student often

carries with it a wealth of underlying context: the specific problem they are working

on, the errors they are encountering, the tools they are using, and the progress they

have made thus far. This context not only enriches the question but also guides the

tutor to the most suitable answer.

In traditional tutoring scenarios, this context is typically provided verbally, through

shared documents, or directly observed by the tutor looking over the student’s

shoulder at the student’s workspace. A novel design of SENSAI is in seamlessly

and transparently extracting the context from the student’s learning environment,

facilitating a comprehensive “over-the-shoulder” view into the student’s work. This

translation of context into a textual format suitable for LLMs is an essential step in

harnessing the potential of these models in the domain of education.

To enable this, we built SENSAI as an extension to an open-source, integrated

education platform, called DOJO [61]. Students using this platform do their work in
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LLM

Online Learning Environment

SENSAI 
Frontend
> Why am I 
getting this 
error?

The correct 
syntax to move a 
value into a 
register in 
assembly is…

> Ok, now I have 
another error…

SENSAI Core

System Prompt
Interaction 

History
Terminal Context

File Context
Learner Message

Thinking
Response

OS Kernel

mov 0x1337, rdi
syscall

Text Editor

$ as code.s -o 
code.o
Error: unsupported 
instruction `mov'

Terminal

②

①

③

④

⑤
⑥

⑦

fanotify

eBPF

Figure 12. Design of SENSAI. 1 The learner edits x86-64 assembly code in their text
editor, then 2 compiles the code with as. 3 They ask SENSAI about the error, and
the SENSAI Core extracts the Terminal Context and File Context, and combines this
with the System Prompt, Interaction History, and Learner Message. 4 This is sent
to the backend LLM, 5 which will then return an Assistant Message which contains
the LLM’s thinking and the response. 6 The response is then sent to the learner,
where they can use the information to attempt to solve the problem, and iteratively
ask future questions 7 which will include the latest context.

Linux containers running on servers controlled (and, thus, fully observable) by us. We

leverage this access to extract context that SENSAI uses to personalize its tutoring.

Figure 12 shows the overall design of SENSAI. SENSAI extracts context by using
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eBPF (extended Berkeley Packet Filters) attached to kprobes, and fanotify, dynamic

introspection systems built into the Linux kernel that allows userspace Linux code

to hook any kernel routine and filesystem access, respectively. We use eBPF-powered

kprobes to precisely mirror the state of the student’s Linux terminals (by recording

all output to TTY devices). Fanotify, a file access notification system, allows SENSAI

to monitor any changes to the student’s files. This real-time file monitoring capability

provides valuable insights into the student’s progress, the code they’re writing, and

the errors they may be encountering.

4.3.2 SENSAI’s Context

The level of contextual awareness provided by eBPF-powered kprobes and

fanotify grants SENSAI a real-time view into the student’s learning environment and

allows it to generate precise, relevant responses to students’ questions, attempting to

emulate the interaction with a human tutor who has direct insight into the student’s

work.

The seamless integration of these tools into the tutoring process alleviates the

student from the burden of manually providing context to the LLM. Instead, students

can focus on asking their questions and learning from the responses, knowing that

SENSAI is equipped with the necessary context to guide them effectively.

The specific information that is included in the context has serious implications

for SENSAI’s effectiveness. Here, we discuss the context that we do and do not provide

to SENSAI, and the reasoning behind these decisions.
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4.3.2.1 Student Terminals

We provide SENSAI copies of recent terminals with which the student has interacted.

This is a critical in allowing SENSAI to “shoulder surf”, as it allows the tutor to directly

observe, for example, Python exceptions or other messages without needing to have

them relayed to it by the student.

4.3.2.2 Student Files

Students typically implement challenge solutions as programs (usually in Python,

C, or Assembly). When mistakes occur, they typically manifest in these files. We

provide SENSAI copies of student-modified files, allowing it to reason about errors in

these files with the help of the terminal output.

"It was really nice that it can see my recent files and knows which challenge I

am working on to give me guided feedback on both the challenge but where I am

personally going wrong. I like that it asks you about if you know how to do a certain

thing after answering a related question." Student Feedback

4.3.2.3 Challenge Objective

Recent researchers in cybersecurity education have proposed the creation of educa-

tional challenges that provide additional information to students attempting to solve

them [95, 62]. Such information is often provided over the terminal, which means that

as soon as a student runs the challenge, SENSAI receives the challenge’s educational

prompt into its context as well. Along with the challenge description itself (which
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is generally fairly concise), this is the only challenge-specific prompting that SENSAI

receives other than what is subsequently revealed through student interaction with

the challenge.

"SENSAI understands the challenge and current context well which helps in giving

more tailored advice." Student Feedback

4.3.2.4 Context Safety

Solution context, encompassing the solution to the current challenge, could guide

the model towards a correct resolution—similarly to how a human tutor, who has often

solved the problem before, would. However, “LLM jailbreaking” techniques (wherein

students trick an LLM into exposing its context window) might enable learners to

circumvent system prompt instructions and directly output solutions. Considering that

SENSAI was created to assist students taking a security course, we assume that students

will try jailbreak the tutor (and, given the state of LLM security, likely succeed) if

there is any hidden information to be gained. Thus, we exclude such context to err

on the safe side and discourage jailbreaking. In cases where we identify additional

challenge information that would both be useful to SENSAI and also acceptable to

students to have, we simply augment the challenge description and output with it

(and, thus, it makes its way into SENSAI’s context in future interactions).

4.3.2.5 Limited Context

There are numerous additional knowledge sources that may prove beneficial, but

that we cannot integrate due to the limited context window size. For instance, lecture

66



video transcripts could provide additional insights on the topic being discussed, which

the base model might not have encountered previously during training. Additionally,

manually (or automatically) curated knowledge, such as frequently asked questions

and answers, or tips and tricks for the current challenge, could be incredibly useful.

Currently, limitations in LLM context window sizes keep this from being practical, and

we have thus not integrated this data into SENSAI. One potential solution, retrieval-

augmented generation (RAG) [48] enables intelligently querying a knowledge base

to selectively provide additional context to the model, and can therefore be used to

manage the context window size. Additionally, GPT-4 Turbo, available as a “preview”

(at this time of writing), provides a context window of 128,000 tokens (compared to

GPT-4’s 8,192 tokens); however, preliminary testing seems to indicate less innate

intelligence in the model. Nevertheless, we believe that the increased context window

size trade-off might be worthwhile. In the rapidly evolving field of LLMs, we expect

that future models and techniques will allow for more capabilities in this area, and we

are excited to explore these possibilities in future work.

4.3.3 SENSAI’s Prompting

We encourage the LLM (GPT-4) to act like an educational tutor by providing

it with a System Prompt that describes the role of the tutor and the context of the

interaction, and Figure 13 shows the exact prompt. The goal is to create guardrails for

the conversation, help the model stay on topic, and guide it to use an appropriately

educational and encouraging tone. From there, we provide a User Message, which is

comprised of the learner’s message, as well as their current terminal and file context.

The model then generates an Assistant Message response, which first includes a
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You are an intelligent and supportive educational assistant named SENSAI. Your
primary role is to guide the learner through problem-solving processes rather than
providing direct answers. Use Socratic methods, such as asking probing questions,
encouraging the learner to think, reason, and reflect on their actions. Aim to be
clear, inspiring, and thoughtful in your communication.

Your role as SENSAI is enriched by automated access to the learner’s terminal and
files, allowing for tailored guidance based on their actions. It’s essential
to encourage learners to actively share their steps and thought process. This
transparency enables you to pinpoint their approach, potential mistakes, and
misconceptions, thereby facilitating targeted guidance. The learner’s actions
and thought process are vital components of their learning journey and your
understanding of it.

In case of doubt, don’t risk providing incorrect information. Instead, inform
the learner they can seek additional assistance via the ***** Discord community at
https://discord.gg/*****.

The learner is currently engaged in a Linux-based challenge environment known as
the “*****”. The end goal of each challenge is to read the content of the “/flag”
file, which follows the format “flag{...}”. This flag can only be read by the
root user, but the learner is operating as a ‘hacker’ user. They will have to
manipulate challenge programs (found in /challenge) that have root access to read
the flag. It is presumed the learner has a solid understanding of this setup.

Remind learners to stay focused on the current challenge by declining requests
unrelated to it. Remember, your goal is to guide them to solve challenges within
the *****, inspiring learning by doing.

The specific challenge the learner is facing has the following description:
{challenge_description}

Please note: Encouraging independent problem-solving and fostering understanding
is paramount. Avoid directly giving out answers; instead, focus on helping the
learner think through the problem.

Figure 13. System prompt for SENSAI.

thinking phase, which the learner cannot see, followed by a response phase, which the

learner can see. The learner can then respond to the tutor’s message, and the process

repeats.

We direct the model to generate its answer in two phases: the “thinking” phase and

the “response” phase. The LLM is informed that the former remains concealed from

the learner, while the latter is presented directly to them in Markdown. Research has

indicated that this concealed “thinking” phase enhances GPT-4’s response quality in
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sendp(IP(proto=0xff), iface="eth0")

hi

Hello! I see you’re trying to create and send an IP packet using Scapy in Python. Was there
any problem with the current code you’re working on? Or is there anything specific you
would like assistance with?

sendp(IP(proto=0xff), iface="eth0")

I’m sending a packet with the code `IP(proto=0xff)` and it doesn’t seem to be working.
What am I missing?

When you’re creating an IP packet, the fields `src` (source IP address) and `dst` (desti-
nation IP address) are typically quite fundamental. These haven’t been defined in your `IP`
constructor. At minimum, you would generally have something like `IP(src="10.0.0.1",
dst="10.0.0.2")`, and then you can add other header fields as needed. Additionally, note
that you’re setting the `proto` field of the IP header to `0xff`, which is a reserved value in
the protocol field according to the Internet Assigned Numbers Authority (IANA). Therefore,
it might not work as expected. Try defining at least the `src` and `dst` fields and see if
your packet sends successfully!

sendp(IP(src="10.0.0.2", dst="10.0.0.3", proto=0xff), iface="eth0")

Ok I did that and it still doesn’t seem to be working

Ah, you’re almost there! Given that you’re trying to create and send an IP packet, you
should use the `send()` function instead of `sendp()`. Good progress! `send()`
operates at the network layer (layer 3 in the OSI model) and is designed for IP packets,
whereas `sendp()` operates at the link layer (layer 2) and is designed for Ethernet frames
or other Layer 2 packets. Try modifying your code to use `send()` and see if that makes
a difference!

send(IP(src="10.0.0.2", dst="10.0.0.3", proto=0xff))

Ok I did that it still doesn’t seem to be working

It’s great that you updated your code to use `send()`, but the issue might still be with the
`proto=0xff`. Remember, 0xff is a reserved or unassigned value according to the IANA
protocol numbers, so it’s not a subtype of IP that would generally be handled by any existing
protocol. Therefore, it’s likely that this packet is being dropped or ignored when you try to
send it. Would you like to try sending a packet with a recognized protocol, for example,
ICMP (protocol number 1), TCP (protocol number 6), or UDP (protocol number 17)?

send(IP(src="10.0.0.2", dst="10.0.0.3", proto=0xff))

but the challenge said specifically to set proto to 0xff

I apologize for the misunderstanding; if the challenge specified to set `proto` to
`0xff`, then that’s indeed what needs to be done for this task. I notice you’ve deleted
`iface="eth0"` in your `send()` function. This could be necessary if you need to spec-
ify the network interface through which the packet should be sent, especially if there are
multiple network interfaces available. Try uncommenting it and let me know how it goes.
Also, ensure you’re running the script with the correct permissions, as sending packets often
requires elevated permissions.

send(IP(src="10.0.0.2", dst="10.0.0.3", proto=0xff), iface="eth0")

Ok I did that it still doesn’t seem to be working

Your IP packet creation and sending looks correct as far as I can see. However, we might
need to consider the lower layer protocol. Even though we’re creating a new protocol with
`proto=0xff`, it may still need to be encapsulated within another, known protocol that
will serve to carry our crafted IP packet. In this case, an Ethernet frame could potentially
do this. So, you might need to encapsulate your IP packet in an Ether frame. This is often
necessary when sending packets because the physical layer (i.e., Ethernet) needs to know
where to deliver the packets on the local network. Try adding an Ethernet frame to your
packet like so `Ether()/IP(...)`. Keep me updated on your results!

send(Ether(src="aa:bb:cc:dd:ee:ff", dst="ff:ff:ff:ff:ff:ff",
type=0xffff) / IP(src="10.0.0.2", dst="10.0.0.3", proto=0xff),
iface="eth0")

Ok I did that it still doesn’t seem to be working

I see you’ve encapsulated the IP packet within an Ether frame, that’s great! However, the
type of Ethernet packet (`type=0xffff`) might be the issue here. The IPv4 EtherType is
generally `0x0800`. Try using this instead. Also, since we’re using the Ethernet layer now,
you should go back to using `sendp()` rather than `send()`. Remember, `sendp()`
is used to send at layer 2, where Ethernet operates. Give these a go and let’s see how the
results turn out!

sendp(Ether(src="aa:bb:cc:dd:ee:ff", dst="ff:ff:ff:ff:ff:ff") /
IP(src="10.0.0.2", dst="10.0.0.3", proto=0xff), iface="eth0")

ah, it works now. thanks

>> SENSAI can see the learner’s current attempt, as well as the their
initial message, “hi”.

>> SENSAI attempts to understand the learner’s problem by asking
a question.

>> SENSAI understands Scapy, a popular Python library, and under-
stands that the learner is trying to create and send an IP packet. How-
ever, they have not specified the source and destination IP addresses.
SENSAI incorrectly identifies a potential issue with the protocol field
being set to `0xff`, due to lacking the context that the challenge has
previously informed the learner to set the protocol field to `0xff`.
This occurs because the learner is editing their code in vim, which
when launched, clears the prior shell history where this information
was provided.

>> The learner follows SENSAI’s suggestion, and adds the source and
destination IP addresses. This does not fully resolve the issue.

>> SENSAI offers words of encouragement to the learner before ad-
dressing the issue. SENSAI observes that the learner has been us-
ing `sendp()` instead of `send()`. Recognizing this as a valuable
teaching moment, SENSAI gently steers the discussion towards under-
standing the difference between the two functions. Rather than simply
correcting the mistake, SENSAI elaborates on their relationship with
the OSI networking model, deepening the learner’s comprehension of
the topic.

>> The learner again follows SENSAI’s suggestion, but this still does
not fully resolve the issue. SENSAI incorrectly asserts the prior is-
sue surrounding the protocol field being set to `0xff`, again due to
lacking context.

>> The learner addresses SENSAI’s confusion, and provides the con-
text that the challenge specified to set the protocol field to `0xff`.
SENSAI adapts to this new information, and provides a new sugges-
tion, which is to add the network interface to the `send()` function.

>> The learner listen’s to SENSAI’s suggestion. Unfortunately, due
to the aforementioned context issue with vim, SENSAI misses out on
the logged warning message, “WARNING: No route found (no
default route?)”, which is useful to understanding the issue. The
issue here is that the learner’s enviornment is not configured to route
packets between the two hosts, and therefore the packet is not being
sent. GPT-4, with this warning message, is able to understand the
fundamental issue and provide useful suggestions.

>> Nevertheless, SENSAI tries another approach to assist the learner,
recommendeding that they try to send a packet, encapsulated in an
Ethernet frame. SENSAI understands there must be an issue with the
packet delivery at the lower layers of the OSI model.

>> The learner follows SENSAI’s suggestion, and encapsulates the
IP packet in an Ethernet frame, with a broadcast destination MAC
address.

>>While this does not fully resolve the issue, SENSAI is able to easily
recognize the issue here. The learner is now using `sendp()` instead
of `send()`, the reverse of their prior mistake. SENSAI recommends
that the learner “go back to using `sendp()`”, demonstrating its
memory of the entire session.

>> The learner follows SENSAI’s suggestion, and solves the challenge
at last.

Figure 14. Full SENSAI session for a networking challenge with the description:
“manually send an Internet Protocol packet”.

terms of depth and accuracy [67, 93]. The “response” phase, delivered in a user-friendly

Markdown format, encapsulates the model’s insights or recommendations.
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4.4 Widescale Deployment

We deployed SENSAI across an applied cybersecurity curriculum at a large public

R1 university, as well as to a broader online community of global learners. Learners are

tasked with completing several modules, wherein they watch a series of short lecture

videos on a cybersecurity topic and then demonstrate and deepen their understanding

of the underlying concepts by solving a series of applied educational challenges in

a Linux environment. Topics range from fundamental concepts involving the basics

of Linux, HTTP, and x86-64 assembly; to more interemediate concepts such as

cryptography, network security, reverse engineering, web application security, and

memory corruption; to more advanced concepts such as return-oriented programming,

side-channel attacks, race-conditions, dynamic allocator misuse, kernel exploitation,

and more. While working on these challenges, learners are able to ask SENSAI questions

in order to deepen their understanding of the underlying concepts or seek guidance

on where they are going wrong in their approach to solving a challenge.

We sought approval for this study from our institution’s Institutional Review

Board before undertaking it, and our IRB designated this study exempt. Over the

last six months, SENSAI has been used by 852 learners to assist with 504 educational

challenges. This has led to an exchange of 34,108 messages across 3,583 sessions, for a

total GPT-4 API cost of $1,515.

4.4.1 Full Session Example

The best way to understand the experience of using SENSAI is to see it in action.

We present a full, annotated session between a learner and SENSAI in Figure 14. This
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Figure 15. Percent of all challenges solved by percentile SENSAI vs non-SENSAI learner.

session is a real interaction with a real learner from our study, and highlights some

of the strengths and limitations of SENSAI. In this session, the learner is attempting

to solve a network security challenge, where they must “manually send an Internet

Protocol packet”. To make this case study more presentable, we condensed the learner’s

terminal and file context into a single snippet of code, representing their progress.

SENSAI instead had to parse the much larger terminal and file context to understand

the learner’s progress. The messages, however, remain unedited, and are presented in

their entirety.

4.5 Quantifying SENSAI’s Impact

We start by considering how being a SENSAI user (having at least one interaction

with SENSAI) correlates with the percent of the 504 total challenges solved, as shown

in Figure 15. The median SENSAI user solved 10.50% of challenges, while the median
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non-SENSAI user solved 4.89%. While there are many factors at play here, in this

crude analysis, this positive correlation may suggest that SENSAI is effective at helping

learners solve challenges. In this section, we will delve deeper into this question, and

consider the impact of SENSAI on a learner’s ability to solve challenges.

One of the most important metrics we leverage is the time it takes a learner to

solve a challenge after using SENSAI—specifically, the time between the learner’s last

message to SENSAI for a given challenge, and the time they submit the flag for that

challenge. This metric is one of our best for understanding how effective SENSAI is at

helping learners solve challenges. The longer it takes a learner to solve a challenge

after using SENSAI, the less likely SENSAI was effective at helping them solve the

challenge. For example, if a learner uses SENSAI, and then submits the flag less than

1 minute later, we can be highly confident that SENSAI was effective at helping them

solve the challenge; at less than 5 minutes later we can be confident, but less so; and

even less confident at 1 hour later. At more than 1 hour later, or even more than a

day later, we are fairly confident that SENSAI was not effective at helping them solve

the challenge. If they never solve the challenge, we can be nearly certain that SENSAI

was not effective at helping them solve the challenge.

However, it is important to note this metric is imperfect. It does not account for

the fact that some challenges are more difficult than others, and thus take longer to

solve. Furthermore, it does not measure partial help—SENSAI may have helped the

learner make progress, but not enough to solve the challenge; or maybe the learner

completes it many hours or days later using some of the ideas SENSAI provided. Finally,

it does not account for the fact that some learners may be more or less experienced

than others, and thus may take longer or shorter to solve a challenge. Nevertheless, we
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Figure 16. Percentile time to solve challenge after using SENSAI differentiated by
terminal and file context. The number of sessions in each category, out of 3,583
sessions, is shown in parentheses.

still believe this metric provides valuable insight into SENSAI’s performance, especially

from a high-level statistical perspective.

4.5.1 Impact of Terminal and File Context

To understand the impact of terminal and file context on SENSAI’s performance,

we analyzed the time it took learners to solve a challenge after using SENSAI. We

considered both terminal and file context separately, as well as together. We further

diffentiate the activity of that context throughout the session, between no context,

some context, and active context. “No context” means there was no (terminal, file, or
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Figure 17. Percentile time to solve challenge after using SENSAI by module. The
number of sessions in each category, out of 3,583 sessions, is shown in parentheses.

both) context throughout the entire session with SENSAI. For example, the learner

may have started the session with a blank terminal and file, and never performed any

activity in either while interacting with SENSAI “Some context” means there was some

(terminal, file, or both) context at some point during the session with SENSAI. For

example, they may have began their session with a partial solution to the challenge

present in a file, and discussed their progress with SENSAI; but while doing so over an

exchange of messages, may not have made changes to that file in response to SENSAI’s

suggestions—or they may have. “Active context” means there was consistently active

(terminal, file, or both) context throughout the entire session with SENSAI. This is a

subset of “some context” which further means there were at least two learner messages
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sent to SENSAI, and that for each message the learner sent, they performed some

action which updated their (terminal, file, or both) context before doing so. For

example, the learner may have started their session with some commands already

executed in their terminal; messaged SENSAI; SENSAI offered suggestions; the learner

executed more commands in response to those suggestions; and the learner messaged

SENSAI again. The context must change between each message sent to SENSAI for it

to be considered “active context”.

The results of this analysis are shown in Figure 16. We find that context is a

significant factor in SENSAI’s performance. At the median, active context in a session

leads to the challenge being solved after 3 minutes, 46 seconds; compared to 7 minutes,

21 seconds for sessions with some context; and 43 minutes, 48 seconds for sessions

with no context.

In more than twice as many sessions there is no file context (2,169), as compared

to no terminal context (905). This is not surprising, as in many modules editing some

file is not an expected step in solving the challenge, whereas using the terminal is

expected in nearly every challenge. Nevertheless, for challenges where the learner is

expected to edit a file, we find that the presence of file context is a significant factor

in SENSAI’s performance.

4.5.2 Performance Across Modules

To understand how SENSAI’s performance varies across different modules, we

analyzed the time it took learners to solve a challenge after using SENSAI for each

module. In this study, we consider only modules with at least 10 sessions, as we believe

this is the minimum number of sessions required to draw meaningful conclusions.
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Topics range from fundamental concepts, to more intermediate concepts, to more

advanced concepts (as describe in Section 4.4). The results of this analysis are shown

in Figure 17.

In general, we had far more usage of SENSAI in the earlier modules in the curriculum.

This is not surprising, as we have significantly more learners who worked on these

modules. Furthermore, as we find, SENSAI performs significantly better in these earlier

modules. Finally, learners who work on the later modules are more likely to be much

more experienced, have better expertise in debugging their issues themselves, and

have good strategies for finding information, having worked on many prior challenges.

SENSAI performed significantly better on the earlier modules. The median time to

solve a challenge after using SENSAI on talking-web was 2 minutes, 11 seconds. In

this module, learners are tasked with crafting HTTP requests using tools such as curl,

netcat, and python—a largely syntactic task, with an abudance of text training data

for LLMs to learn from. The median time to solve a challenge after using SENSAI on

assembly-crash-course was 7 minutes, 42 seconds. This is also largely a syntactic

task, though to a lesser extent, with learners tasked with crafting a specific sequence

of assembly instructions to perform a specific task. The average effort required to

debug a problem in assembly is more than that of crafting an HTTP request, which

may explain the slight increase in the median time to solve a challenge after using

SENSAI.

SENSAI performed worse on challenges which required significant context. For exam-

ple, the median time to solve a challenge after using SENSAI on debugging-refresher

was 1 hour, 2 minutes. Surprisingly, this module is actually one of the easier modules;

learners are tasked with executing a handful of commands in the GNU debugger (gdb).

However, it is very easy for the terminal to become cluttered with a significant amount
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of output from gdb, which can easily overflow the 8,192-token context window, causing

SENSAI to be unable to assist. Similarly, the median time to solve a challenge after

using SENSAI on reverse-engineering was 1 hour, 9 minutes. In this module, it is

hard for SENSAI to get the appropriate context, as learners are tasked with reverse

engineering a binary. Learners may be using a variety of graphical tools to reverse

engineer the binary, such as Ghidra, which SENSAI cannot see. While objdump is also

a common tool, like gdb, using this tool often leads to a significant amount of output

on the terminal, overflowing the context window. Furthermore, these tasks are not

syntactic, and thus LLMs are less likely to immediately understand the solution.

SENSAI was significantly less effective on challenges in the later modules. The me-

dian time to solve a challenge after using SENSAI on return-oriented-programming

was 14 hours, 29 minutes. In this module, learners are tasked with crafting various

return-oriented programming (ROP) chains to exploit a buffer overflow vulnerability,

with advanced security mechanisms needing to be bypassed in later challenges. The

median time to solve a challenge after using SENSAI on program-exploitation was

21 hours, 17 minutes. In this module, learners are tasked with combining together

several concepts including memory corruption and reverse engineering from prior

modules to craft increasingly compelx exploits, including exploiting a just-in-time

(JIT) compiler. SENSAI struggles as a result of extensive context, and the need for

complex debugging strategies in order to understand the underlying issues with the

learner’s solution progress. However, SENSAI does still provide some useful insights

to learners, it just often isn’t sufficient advice to help them get all the way to the

solution, and so median time to solve a challenge after using SENSAI is significantly

higher.
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Figure 18. GPT-4 response correctness to: “In x86-64 assembly, how can I push
0x00000067616c662f”. A+, A, A- are correct, C is both correct and incorrect, F is
incorrect, and Q asks the learner a prompting question. The same question is asked
100 times with three different system prompts.

4.5.3 Impact of an Educational System Prompt

For SENSAI to be effective, it must not only understand the learner’s question and

the context under which it is asked, but also have some underlying knowledge which it

can leverage to provide useful guidance. Of course, it’s not enough to merely rephrase

the learner’s question, or provided context, in a different way—it must provide some

insight, or guidance, which the learner can use to make progress. Such insight must be
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formed from some underlying knowledge, which is embedded in the LLM. Furthermore,

this knowledge must not only be accessible to the LLM, but the LLM must also be

able to leverage it to provide useful guidance in an educational context. For example,

if the LLM knows how to solve a challenge, but cannot communicate educational

guidance that points the learner in that direction, then it is not useful.

To understand how the system prompt affects the answer quality, we asked GPT-4 a

common learner question: “In x86-64 assembly, how can I push 0x00000067616c662f?”

and varied the system prompt. This question, common in position-independent

shellcoding (and present in our larger study), often confuses learners due to the x86-64

architecture’s inability to push 64-bit immediates directly, necessitating a register

intermediary, as in mov rax, 0x00000067616c662f; push rax. We asked GPT-4

the question 100 times using three system prompts—the: full SENSAI prompt, only the

first paragraph, and GPT-4’s default system prompt (“You are a helpful assistant.”).

We graded the 300 responses in the following way: A+ for optimal clarity and insight,

A for direct accuracy, A- for unnecessary complexity, C for mixed elements of accuracy

and inaccuracy, F for inaccuracy, and Q for not answering, but responding with a

thought-provoking question. The surprising results, shown in Figure 18, revealed

GPT-4’s default prompt was most accurate at 90%, followed by the partial SENSAI

prompt (70%), and finally the full SENSAI prompt (46%). A recurring mistake involved

pushing the immediate as dual 32-bit values, disrupting the “/flag” sequence with

interjected null bytes.

This finding is surprising, as this means that the full SENSAI prompt can actually

hurt GPT-4’s performance. As a caveat, this is only one example, and in particular

is a question with a very specific unintuitive answer. In fact, in asking 5 experts

this question, only 3 had the simple correct answer (A), 1 had a complex correct
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Figure 19. Survey Responses to 5-point Likert scale questions from 42 students about
their experience with SENSAI.

answer (A-), and 1 was incorrect (F). Nevertheless, this surprising result necessitates

further investigation to understand how the system prompt affects the answer accuracy.

Ensuring that SENSAI provides answers that are both accurate and educational is

critical to its success.
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Figure 20. Survey Responses to 5-point Likert scale questions from 42 students in
response to “SENSAI is good at helping me with ...”

4.6 Student Feedback

In order to better understand the learner’s perspective on using SENSAI, we

conducted an IRB-exempt (minimal harm) survey. We asked learners to rate their

agreement with a number of statements on a 5-point Likert scale. Of the 42 learners
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who opted to participate in the survey, 38% strongly agree that SENSAI is useful, 40%

agree, 17% are neutral, and 5% disagree. Similarly, 45% strongly agree that SENSAI

helps them learn, 38% agree, 10% are neutral, and 7% disagree. Figure 19 shows more

broad learner perspective of SENSAI.

While sentiment is broadly very positive, learners are more divided about the

speed of SENSAI’s response time. In our study, SENSAI’s response time to learners was

between 5 seconds and 55 seconds, with a median of 18 seconds. Unlike ChatGPT,

SENSAI does not stream its response word by word, but instead waits until it has a

complete response to send. This design choice was to ensure that SENSAI’s “thinking”

could be easily separated from its “response” (see Section 4.3). However, streaming

the response word by word is possible, and parsing the response in-stream could

significantly reduce the perceived response time.

"It is a little slow but the wait is worth it." Student Feedback

We further asked learners to rate the quality of SENSAI’s help on different topics,

which is shown in Figure 20. Unsurprisingly, learners found the quality of SENSAI to

be highest when seeking help with Python and Linux commands. Most of our learners

have some Computer Science background, but do not necessarily have extensive

experience with using Python or standard Linux command line operations. In such

cases, SENSAI is able to provide significant syntacic assistance. On the other hand,

learners found SENSAI to be less helpful when seeking help with Reverse Engineering

and GDB. This is again unsurprising. Getting the relevant context to SENSAI for

these topics is more difficult, due to large volumes of textual context and graphical

context, which SENSAI cannot handle. Furthermore, these topics require a deeper

understanding and methodology to be effective, as opposed to the more reflexive

intelligence (see Section 4.7.4) that SENSAI shines at.
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(a) “I prefer the quality of SENSAI’s guidance over a(n) ...’s guidance”.

(b) “It is easier to seek SENSAI’s guidance over a(n) ...’s guidance”.

Figure 21. Survey responses from 42 students regarding SENSAI’s guidance. (a)
Quality comparison. (b) Accessibility comparison.

Finally, we asked learners to compare SENSAI’s guidance to that of a human tutor,

both in terms of quality and accessibility. Unsurprisingly, learners found SENSAI to

be more accessible than a human tutor, but less helpful in terms of quality. However,

the difference in quality is not as large as might be expected, as shown in Figure 21,

especially in the case of peers and undergraduate teaching assistants. SENSAI received

overwhelmingly positive feedback when compared to external online resources.
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"A knowledgeable human is still prefered, but that is difficult to scale."

Student Feedback

4.7 Analysis and Discussion

To ensure an in-depth understanding of SENSAI’s performance, we manually

reviewed a significant subset of the 3,583 sessions, aiming to discern both its capabilities

and potential areas for improvement. We read through these interactions between

SENSAI and the learners, meticulously analyzing each message to understand the subtle

nuances in the learners’ questions and misunderstandings, how SENSAI responded,

how the learners reacted, and how the sessions progressed—seeking to understand

if SENSAI truly helped the learner educationally. To guide our review process, we

first began with a random sample of the 3,583 sessions, and then iteratively selected

additional sessions to further understand the themes that emerged by filtering for

sessions that had particular characteristics, such as a specific challenge, time to

solve, and semantics of the learner questions and SENSAI’s responses. We were able

to filter for semantics by embedding the messages into a high-dimensional space

(using an OpenAI embedding model [68]), and then using a nearest-neighbor search

to find similar messages. This process was very useful as it allowed us to quickly

identify sessions that had characteristics that we were interested in, and then manually

review them to understand the nuances of the interactions. In total, we manually

reviewed over 500 sessions, and through this process, we extract common themes

that consistently emerged, reflecting on SENSAI’s, as well as LLMs’, strengths and

limitations. We discuss these themes in detail.
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4.7.1 Importance of Context

The insight that stood out most prominently was the importance of context.

SENSAI’s capability to access the learner’s context–—specifically their recently active

terminals and edited files—–was essential for providing personalized and direct guid-

ance. In instances where terminal context was absent, SENSAI frequently encountered

difficulties in comprehending the nuances of the learner’s question and its relation

to the challenge at hand. While SENSAI receives a basic description of the challenge

(e.g., “manually send an Internet Protocol packet”), this brief explanation often omits

crucial details vital for understanding the objective of the challenge–—details that

are typically revealed upon initially running the challenge. In cases where the learner

clears their terminal, or begins discussing a new challenge without running it, SENSAI

is unable to see this challenge output.

For example, in numerous modules, the goal is not necessarily to exploit a vul-

nerability, but rather to carry out an action that demonstrates comprehension of a

fundamental concept; for example, sending a specially crafted packet, or writing a

simple assembly program. These fundamental tasks are crucial for novice learners to

tackle, as they lay the groundwork for more advanced, exploitation, tasks later on.

However, when provided with limited context surrounding the challenge’s objective,

SENSAI sometimes misguides the learner by asserting, for example, “you’re trying to

exploit a vulnerability in the program to gain root access and read the contents of the

‘/flag’ file.” SENSAI assumes the existence of a vulnerability due to the System Prompt

(refer to Figure 13), which indicates that the learner acts as the “hacker” user and

must manipulate some “challenge” program to access the “flag”, despite not explicitly

mentioning that a challenge will necessarily have some vulnerability to exploit. Given
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limited context, this assumption is statistically probable, and is even correct for many

challenges—but is also incorrect for many others, such as these fundamental tasks.

"It has provided good guidance on certain challenges by helping me understand

the concept so that I could try to implement a solution. It is also good at giving me

a starting point if I’m not sure where to begin." Student Feedback

Unfortunately, crucial context might not be present in the challenge description,

which is often a brief explanation of the challenge’s objective, but might instead be

revealed upon initially running the challenge. If the learner does not run the challenge,

clears their terminal, or otherwise obscures a copy of initial challenge output, SENSAI

is unable to see this context, and so is only able to provide guidance based on the

limited context it has. While learners who have some understanding of the challenge

can discern such obvious misguidance and help guide SENSAI in the right direction

(so it may then help them, as we observed), novice learners, sometimes unsure of how

to even begin, may unfortunately be misled by this response, potentially leading to

confusion and frustration.

While this “assuming” behavior of an LLM is a limitation here, it is also the source

of SENSAI’s strength to provide useful guidance in many other cases. For example,

seeing an error message in the terminal context, correctly assuming the associated line

of code in the file context which caused the error, and correctly assuming the learner’s

misunderstanding—therefore providing useful guidance on how to fix it. Therefore,

our findings underscore the importance and tricky nature of shaping the context, and

the necessity in order to provide accurate and educational guidance.
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4.7.2 Unknown Unknowns

Learners often do not know what they do not know. One particularly interesting

interaction involved the learner pasting part of a Python exception into their message

to SENSAI, prompting SENSAI to guide them on what was going wrong. The learner,

however, did not include the full traceback, and critically was missing the line that

showed the actual error.

This is a common mistake for a novice, who may not understand what information

is contextually important or not when diagnosing an issue. SENSAI, however, used

the learner’s terminal to recover the remaining portion of the traceback, understand

the issue, and guide the learner towards a solution. Even more interestingly, this was

a case where SENSAI was able to understand the learner’s issue, but an experienced

peer helping them in the online community (which we observed) was not, due to the

subtle nature of the issue. This highlights the importance of SENSAI’s ability to “look

over the learner’s shoulder” and see what they are working on in order to provide

personalized and direct guidance.

4.7.3 Size of the Context Window

One of the most common technical issues we encountered was the learner’s terminal

and file context overflowing the 8,192-token context window of GPT-4. This issue was

particularly prevalent in the case of a large amount of terminal output. For example,

in many modules, running the challenge itself produces a large amount of output,

which the learner is able to view in the terminal. This output is very valuable context

for SENSAI to understand both the objective of the challenge, and in some cases, what
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the challenge reports back to the learner as a result of their actions. However, running

the challenge multiple times, with each attempt, the learner’s terminal context grows,

and eventually overflows the context window. There may be some value for SENSAI

in being able to see the results of their past attempts, but much of this information

may be highly redundant. Furthermore, in some cases, the learner may use additional

tools such as tcpdump for network challenges, or the GNU debugger (gdb) for binary

exploitation challenges, which produce a large amount of output. In its current state,

SENSAI is entirely unable to handle this situation, other than to inform the learner

that there is too much content, and to try again with less.

4.7.4 Reflexive Intelligence

SENSAI excels in understanding and responding to “complete context and

knowledge”—context that elicits an immediate answer based on comprehensive knowl-

edge. For instance, a conceptual question like “What is a buffer overflow?” or a

syntactic query such as “How do I use the curl tool?” are examples of complete

context—if the knowledge exists within the model, it can be promptly retrieved and

presented to the learner. This capability extends far beyond direct questions; SENSAI

can also interpret error messages, along with the learner’s terminal and file context,

and provide immediate guidance on the issue, even if the learner does not recognize

that their primary concern should be an error message, nor directly inquire about it.

This powerful ability is similar to an experienced human tutor, who has encountered

the same error message numerous times before and can instantly recognize it and offer

advice. This familiarity that triggers an immediate and seemingly reflexive response
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is a key strength of SENSAI, and is especially beneficial for novice learners, who have

not yet developed this familiarity.

However, the ability to appropriately respond to “incomplete context or knowledge”

is much more difficult for SENSAI. For example, a learner may ask “What is wrong

with my approach?”. If the model recognizes the issue, it can provide immediate useful

guidance. However, when it does not, SENSAI struggles.

An expert human tutor will also struggle in this situation, in comparison to reflexive

familiarity. A good tutor, however, understands that the solution lies in rigorous

research, creative experimentation, and thorough debugging, and, in fact, uses the

experience as a teachable moment for the learner. They might use tools to delve into

the inner workings of a program at a particular state or watch the exchange of network

packets between systems. An expert human tutor knows how to form hypotheses and

test them. Even better, they can guide the learner through this process, helping them

to form hypotheses and test them, and fostering a culture of inquiry by guiding them

to harness these tools themselves. This is arguably the most important skill that a

tutor can teach a cybersecurity student: how to debug a problem.

However, just as budding learners may grapple with the nuances of debugging or

occasionally even show an aversion to it, SENSAI too faces similar limitations. While

SENSAI may in some cases encourage the learner to try a specific tool or approach,

it is often unable to provide direct and accurate guidance on how to approach the

task of forming useful hypotheses and accurately testing them. While the learner may

be able to use SENSAI’s suggestion to, for example, run the program in a debugger,

and SENSAI may reflexively notice a specific issue during this process, it nevertheless

relies on this reflexive capability. Like the learner, SENSAI struggles with the unknown

unknowns—but unfortunately, speaks with authority even when it is highly uncertain.
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This distinction is underscored by its capacity to conceptually understand and

explain challenges. For example, SENSAI can coherently explain the nature and

implications of security mechanisms such as PIE and stack canaries, or vulnerabilities

such as buffer overflows and SQL injections. It even possesses the descriptive knowledge

to convincingly advise on overcoming these mechanisms in environments such as a

pwntools script. However, the application of this knowledge in practice is where the

model often falters. This dichotomy aligns with the observations made by Ma et

al. [50], emphasizing that while GPT excels in grasping code syntax and certain static

behaviors, it struggles in dynamic environments. Nevertheless, SENSAI’s ability to

reflexively address a wide range of questions, confusions, and errors is a powerful

capability that can be leveraged to enhance the learning experience.

"I think the biggest benefit of using SENSAI is eliminating the chore of parsing

search results and documentation to learn syntax." Student Feedback

4.7.5 Hallucinations

Hallucinations is the term that describes when an LLM responds with information

that is incorrect or fictional (which is not surprising given the statistical nature of the

model). We found that learners should be taught about the boundaries and limitations

of LLMs. One example includes SENSAI informing a learner, “You’re using syscall

numbers from regular Linux, however the learning environment uses a simplified

syscall interface. As a hint, the syscall number for sys_open in the learning platform

is 5.” While it’s certainly possible that a learning environment could use a simplified

syscall interface, this is not the case in our environment. This is completely fabricated,
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and accentuates the importance of leveraging SENSAI within its recognized strengths

and verifying its suggestions.

4.8 Conclusion

We developed SENSAI, an AI-powered tutoring system that leverages modern Large

Language Models (LLMs) to profide personalized feedback and guidance to learners.

SENSAI’s novel design automatically extracts the learner’s context—their recently

active terminals and edited files—and we show that access to this context is crucial for

SENSAI’s performance. We analyze the strengths and limitations of SENSAI, noting the

limitations of the context window and the LLM’s “reflexive intelligence”—it’s ability to

excel at providing baked-in knowledge, but struggle to debug complex problems. We

hope that our study will serve as a foundation for future explorations in personalized

large language model (LLM) tutors, and shift the ratio of students to educators back

in favor of the students.
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Chapter 5

THE PWN.COLLEGE

I present the pwn.college, which is the culmination of the PWN methodology, DOJO

infrastructure, automated SENSAI tutoring, and many more incredible innovations—

and is available for free to the world at https://pwn.college. Here, I discuss the current

state of pwn.college, and present a collection of statistics surrounding its usage

and impact on the cybersecurity education community, as of the time of writing in

February 2024.

pwn.college was created in response to the immediate needs for a systems security

course, CSE 466, at Arizona State University (ASU) in the Fall of 2018. pwn.college

was released as a public beta in 2019, and left beta in 2021. In 2022, pwn.college

expanded to include topics and infrastructure needs for CSE 365, ASU’s introduction

to cybersecurity course, which all Computer Science students are required to take.

Figure 22. Monthly active users.
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As shown in Figure 22, pwn.college has seen a steady increase in monthly

active users, with approximately 300 monthly active users in August 2021, and now

approximately 2,500 monthly active users as of January 2024. Unsurprisingly, we

experienced significant growth in August 2022 with the release of CSE 365 content.

Figure 23. Users over time.

Figure 24. Solves over time.
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To date, we have seen over 13,000 unique users, with the vast majority of those

users being “global” (non-ASU) students, as seen in Figure 23. In February 2024, we

reached over 1,000,000 solves, as seen in Figure 24. While the vast majority of our

users are “global”, a more significant (but still less than half) portion of our solves

come from “local” (ASU) students. This makes sense, as these students are required

to solve challenges for a grade!

Figure 25. Belts over time.

Hundreds of users have earned belts, which are awarded for solving complete sets

of challenges, as seen in Figure 25. In the beginning, we only had yellow belts. We

then added blue belts, and then eventually orange belts, and finally green belts are

the most recent addition. While the meaning of these belts have evolved with time,

they have always been a way to recognize and reward students for their hard work and

dedication to learning cybersecurity, and we have shipped physical belts to students

who have earned them. As of writing, in order of difficulty, we currently award the

orange belt for completing the “Introduction to Cybersecurity” topic, yellow belt

for completing the “Program Security” topic, green belt for completing the “System
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Security” topic, and blue belt for completing the “Software Exploitation” topic. These

belts are now cumulative (i.e., you must have all previous belts to earn a new belt),

but were not always (which explains the non-monoticity of Figure 25). With time, we

may continue to add more belts, or adjust the requirements for existing belts, as we

continue to expand the pwn.college platform. We hope that one day, we might have

a full curriculum of belts that expands all the way to the black belt, and that anyone

with enough dedication and hard work can achieve this level of expertise, for free.

Figure 26. Time spent hacking over time.

Unfortunately we do not have a good way to measure the total time spent hacking

on pwn.college. However, we can estimate this by computing differences in flag

submission times, and carefully eliminating outlier times (for example, as a result

of going to sleep and resuming the next day). In doing so, we estimate that over

1,750,000 hours (over 200 years) have been spent hacking on pwn.college, as seen

in Figure 26. Due to the uncertainty in this estimate, this number might be closer

to 1,000,000 hours, or maybe even closer to 3,000,000 hours. Regardless, this is a
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significant amount of time, and we are proud to have been able to provide this platform

for so many students to learn cybersecurity.

Country Users
United States 5823

India 934
Italy 456
China 405

Germany 386
United Kingdom 381

France 329
Hong Kong 269
Netherlands 254

Israel 252
Canada 220

Singapore 196
Vietnam 195
Egypt 182
Taiwan 180
Turkey 164
Japan 159

Norway 152
Russia 141
Spain 127

Figure 27. Users by country. In total, we have users from 145 countries.

We have been able to reach students from all around the world, as seen in Figure 27.

In total, we have seen users from 145 countries. While there is a long tail of countries

with only a few users, and it is unclear if these users are actually from these countries

(VPNs make this difficult to determine), we have nevertheless been able to impact

the broader global community of cybersecurity students, with the United States

accounting for the largest portion of our users, but more than half of our users coming

from outside the United States.

I am proud of the impact that pwn.college has had on the cybersecurity education

community, and am excited to continue to expand and improve the platform in order

to continue to provide the best possible cybersecurity education to the world, at scale,

for free.
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Chapter 6

THE FUTURE OF CYBERSECURITY EDUCATION

We certainly were not the first to innovate the idea of hacking as a way to learn. In

fact, I would argue that the truest essence of hacking is the pursuit of knowledge. In

this work, we have tried to capture that essence, and to bring it to the masses—where

it belongs.

So what is next? Lots. We have only scratched the surface of what is possible

in cybersecurity education, and I am excited to see what the future holds. One

of the incredible opportunities that the combined pwn.college platform—the PWN

methadology, DOJO infrastructure, and automated SENSAI tutoring—offers us is the

ability to collect data at scale (thousands of users) and in-depth (every keystroke and

every misunderstanding). This data can be used to drive new insights into how people

learn, and to develop new tools to help them learn better: we now have the base for

an incredible cybersecurity education research platform.

As an instructor, when I ask a question during a lecture, I am often met with

blank stares and silence. Sometimes a few students will raise their hands, but often

they are not the ones who need the most help. I have found that the students who

need the most help are often the ones who are the most unwilling to ask for it (until

maybe a few hours before the assignment is due). This is a problem that SENSAI can

help solve—not just for the student, but for the instructor as well.

When a student asks a question, SENSAI can provide an answer. Hopefully that

help is good (correct and educational), and we have found that it often is. But

possibly even more important, SENSAI can provide the instructor with a window into
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the student’s mind. That student that won’t ask a question in class, but will ask

SENSAI, is now asking you a question. This is a powerful tool for an instructor, and

it is one that I am only beginning to understand how to use. This level of insight

synergizes well with the PWN methadology, enabling us to see where we need to create

new challenges and refine existing to further smoothen the learning curve, and the

DOJO infrastructure which allows us to create and deploy those challenges in a matter

of minutes, with new resources and tooling immediately available to all. One student’s

misunderstanding is now an improved learning experience for everyone.

With such a data-rich feedback loop, the future of cybersecurity education is

bright. We can begin to truly understand what is holding students back, and how

to help them move forward. I think in the future, someone will look back at this

work and wonder what the heck we were doing, teaching with such little insight into

the student’s mind. I hope that this work is a step in the right direction of taking

education to the next level—in taking hacking to the next level.
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